Does Plasma Treatment Effective for Surface Modification of Polymer? An Overview of Treatment Effect on Adhesive and Tribological Properties

Article Preview

Abstract:

Surface modification with plasma has been widely applied to polymeric materials. This treatment is intended to improve the surface properties of the polymer including its wettability and adhesiveness. The aim of this paper is to provide a review of the literature on the surface treatment of polymers with plasma, which focuses on the effects of adhesive and surface tribology properties. The related surface properties are also reviewed in order to strengthen the review of adhesive properties and tribology. Various types of plasma treatments that have been reviewed reported that plasma can be effectively used to improve surface properties, especially adhesive and tribological properties. On a small surface treatment has been developed plasma jet treatment which has been widely applied in biomedical applications.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1051)

Pages:

160-166

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Xue, Y. Ji, J. Ou, F. Wang, C. Li, S. Lei, W. Li, Surface wettability and strong adhesion of medical polyurethane elastomer porous films by microphase separation. AIP Advances 9 (2009) 075309.

DOI: 10.1063/1.5107459

Google Scholar

[2] F. Awaja, M. Gilbert, G. Kelly, B. Fox, P.J. Pigram, Adhesion of polymers. Prog. Polym. Sci. 34 (2009) 948–968.

DOI: 10.1016/j.progpolymsci.2009.04.007

Google Scholar

[3] A. Sarani, A.Y. Nikiforov, N.D. Geyter, R. Morent, C. Leys, Surface modification of polypropylene with an atmospheric pressure plasma jet sustained in argon and an argon/water vapour mixture. Appl. Surf. Sci. 257 (2011) 8737-8741.

DOI: 10.1016/j.apsusc.2011.05.071

Google Scholar

[4] R.P. Guragain, S. Gautam, R. Shrestha, D.P. Subedi, Surface modification of polycarbonate by treatment with 50hz dielectric barrier discharge at near atmospheric pressure. International Journal of Science and Research, 5 (2016) 1468.

Google Scholar

[5] C. Mandolfino, E. Lertora, C. Gambaro, M. Bruno, Improving adhesion performance of polyethylene surfaces by cold plasma treatment. Meccanica, 49 (2014) 2299–2306.

DOI: 10.1007/s11012-014-9993-y

Google Scholar

[6] S. Van Vrekhem, P. Cools, H. Declercq, A. Van Tongel, C. Vercruysse, M. Cornelissen, N. De Geyter, R. Morent, Application of atmospheric pressure plasma on polyethylene for increased prosthesis adhesion. Thin Solid Films, 596 (2015) 256-263.

DOI: 10.1016/j.tsf.2015.08.055

Google Scholar

[7] J. Turicek, N. Ratts, M. Kaltchev, N. Masoud, Surface treatment of ultra-high molecular weight polyethylene (UHMWPE) by cold atmospheric plasma (CAP) for biocompatibility enhancement, Appl. Sci. 11 (2021) 1703.

DOI: 10.3390/app11041703

Google Scholar

[8] Z. Károly, G. Kalácska, J. Sukumaran, D. Fauconnier, Á. Kalácska, M. Mohai, S. Klébert, Effect of Atmospheric Cold Plasma Treatment on the Adhesion and Tribological Properties of Polyamide 66 and Poly(Tetrafluoroethylene). Materials, 12 (2019) 658.

DOI: 10.3390/ma12040658

Google Scholar

[9] D.G. Petlin, S.I. Tverdokhlebov, Y.G. Anissimov, Plasma treatment as an efficient tool for controlled drug release from polymeric materials: A review. J Control Release. 28 (2017) 266:57-74.

DOI: 10.1016/j.jconrel.2017.09.023

Google Scholar

[10] C. Ma, A. Nikiforov, N.De Geyter, X. Dai, R. Morent, K.K. Ostrikov. Future antiviral polymers by plasma processing. Prog Polym Sci. 118 (2021) 101410.

DOI: 10.1016/j.progpolymsci.2021.101410

Google Scholar

[11] A. Vesel, G. Primc, Investigation of surface modification of polystyrene by a direct and remote atmospheric-pressure plasma jet treatment, Materials 13 (2020) 2435.

DOI: 10.3390/ma13112435

Google Scholar

[12] P.K. Chu, J.K. Chen, L.P. Wang, N. Huang, Plasma-surface modification of biomaterials. Mater. Sci. Eng. 36 (2002) 143-206.

Google Scholar

[13] A Fridman, A Chirokov, A Gutsol, Non-thermal atmospheric pressure discharges. J. Phys. D Appl. Phys. 38 (2005) 1-24.

DOI: 10.1088/0022-3727/38/2/r01

Google Scholar

[14] K.G. Kostov, T.M.C. Nishim, A.H.R. Castro, A. Toth, , L.R.O. Hein, Surface modification of polymeric materials by cold atmospheric plasma jet. Appl. Surf. Sci. 314 (2014) 367–375.

DOI: 10.1016/j.apsusc.2014.07.009

Google Scholar

[15] D. Shaw, A. West, J. Bredin, E. Wagenaars, Mechanisms behind surface modification of polypropylene film using an atmospheric-pressure plasma jet. Plasma Sources Sci. Technol. 25 (2016) 065018.

DOI: 10.1088/0963-0252/25/6/065018

Google Scholar

[16] M. Noeske, J. Degenhardt, S. Strudthoff, U. Lommatzsch, Plasma jet treatment of five polymers at atmospheric pressure: surface modifications and the relevance for adhesion, Int J Adhes Adhes. 24 (2004) 171–177.

DOI: 10.1016/j.ijadhadh.2003.09.006

Google Scholar

[17] W-S. Kim, I-H. Yun, J-J. Lee, H-T. Jung, Evaluation of mechanical interlock effect on adhesion strength of polymer-metal interfaces using micro-patterned surface topography, Int J Adhes Adhes. 30 (2010) 408-417.

DOI: 10.1016/j.ijadhadh.2010.05.004

Google Scholar

[18] H.B. Baniya, M.B. Kshetri, R. Shrestha, B.P. Pandey, R.P. Guragain, D.P. Subedi, Generation and characterization of an atmospheric-pressure plasma jet (appj) and its application in the surface modification of polyethylene terephthalate, Int. J. Polym. Sci. 2020 (2020) 9247642.

DOI: 10.1155/2020/9247642

Google Scholar

[19] L. Manaloto-Ceballos, W. Labriaga, S-Y. Song, J-H Park, Nonthermal plasma on the shear bond strength of relining resin to thermoplastic denture base resin. J Korean Acad Prosthodont. 56 (2018) 199.

DOI: 10.4047/jkap.2018.56.3.199

Google Scholar

[20] D. Hegemann, H. Brunner, C. Oehr, Plasma treatment of polymers for surface and adhesion improvement. Nucl. Instrum. Methods Phys. Res. B: Beam Interactions with Materials and Atoms, 208 (2003) 281-286.

DOI: 10.1016/s0168-583x(03)00644-x

Google Scholar

[21] R. Thompson, D. Austin, C. Wang, A. Neville, L. Lin, Low-frequency plasma activation of nylon 6, Appl. Surf. Sci. 544 (2021) 148929.

DOI: 10.1016/j.apsusc.2021.148929

Google Scholar

[22] R. Tivony, Y. Zhang, J. Klein, Modulating interfacial energy dissipation via potential-controlled ion trapping. J. Phys. Chem. C. 125 (2021) 3616–3622.

DOI: 10.1021/acs.jpcc.0c11264

Google Scholar

[23] J. Krim, Surface science and the atomic-scale origins of friction: what once was old is new again. Surf. Sci. 500 (2002) 741-758.

DOI: 10.1016/s0039-6028(01)01529-1

Google Scholar

[24] D.J. Wolthuizen, D. Martinez-Martinez, Y.T. Pei, Influence of plasma treatments on the frictional performance of rubbers. Tribol Lett 47 (2012) 303–311.

DOI: 10.1007/s11249-012-9985-9

Google Scholar