Friction Coefficient Effect on Stress-Strain Distribution of Ceramic Coated Aeroengine Substrate Using Finite Element Analysis

Article Preview

Abstract:

This study presents the investigation of friction coefficient effect on stress-strain distribution of ceramic coated aeroengine specific material substrate using explicit finite element method. Half-cylinder-on-flat contact configuration subjected to normal and tangential loading is examined. Elastic ceramic coated elastic-plastic Ti-6Al-4V and Super CMV substrates are assigned to study the influence of different friction coefficient on contact pressure, von Mises stress, tangential stress and equivalent plastic strain distribution. The outcome of present research is quite revealing that stress-strain distribution response is remarkable for sliding step which experiencing significant traction compared to normal loading step. Higher possibilities of coated substrate equivalent plastic strain (plastic deformation) are registered under higher friction coefficient cases due to substantial resistance to overcome relative to tangential motion of contacting bodies.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1051)

Pages:

167-174

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Michler, J., & Blank, E. (2001). Analysis of coating fracture and substrate plasticity induced by spherical indentors: diamond and diamond-like carbon layers on steel substrates. Thin solid films, 381(1), 119-134.

DOI: 10.1016/s0040-6090(00)01340-7

Google Scholar

[2] Kot, M., Rakowski, W., Lackner, J. M., & Major, Ł. (2013). Analysis of spherical indentations of coating-substrate systems: experiments and finite element modeling. Materials & Design, 43, 99-111.

DOI: 10.1016/j.matdes.2012.06.040

Google Scholar

[3] Martinez, E., Romero, J., Lousa, A., & Esteve, J. (2003). Nanoindentation stress–strain curves as a method for thin-film complete mechanical characterization: application to nanometric CrN/Cr multilayer coatings. Applied Physics A, 77(3), 419-426.

DOI: 10.1007/s00339-002-1669-0

Google Scholar

[4] Nagentrau, M., Tobi, A. L. M., Jamian, S., & Otsuka, Y. (2020). HAp Coated Hip Prosthesis Contact Pressure Prediction Using FEM Analysis. In Materials Science Forum (Vol. 991, pp.53-61). Trans Tech Publications Ltd.

DOI: 10.4028/www.scientific.net/msf.991.53

Google Scholar

[5] Siswanto, W. A., Nagentrau, M., Tobi, M., & Latif, A. (2015). Prediction of residual stress using explicit finite element method. Journal of Mechanical Engineering and Sciences, 9, 1556-70.

Google Scholar

[6] Nagentrau, M., Tobi, A. M., Jamian, S., Otsuka, Y., & Hussin, R. (2021). Delamination-fretting wear failure evaluation at HAp-Ti-6Al–4V interface of uncemented artificial hip implant. Journal of the mechanical behavior of biomedical materials, 122, 104657.

DOI: 10.1016/j.jmbbm.2021.104657

Google Scholar

[7] Nagentrau, M., Siswanto, W. A., Tobi, M., & Latif, A. (2016). Predicting the sliding amplitude of plastic deformation in the reciprocating sliding contact. ARPN Journal of Engineering and Applied Sciences, 11(4), 2266-2271.

Google Scholar

[8] Siswanto, W. A., Nagentrau, M., Tobi, A. M., & Tamin, M. N. (2016). Prediction of plastic deformation under contact condition by quasi-static and dynamic simulations using explicit finite element analysis. Journal of Mechanical Science and Technology, 30(11), 5093-5101.

DOI: 10.1007/s12206-016-1027-3

Google Scholar

[9] Holmberg, K., Ronkainen, H., Laukkanen, A., & Wallin, K. (2007). Friction and wear of coated surfaces—scales, modelling and simulation of tribomechanisms. Surface and Coatings Technology, 202(4-7), 1034-1049.

DOI: 10.1016/j.surfcoat.2007.07.105

Google Scholar

[10] Zhao, X., Xie, Z., & Munroe, P. (2011). Nanoindentation of hard multilayer coatings: Finite element modelling. Materials Science and Engineering: A, 528(3), 1111-1116.

DOI: 10.1016/j.msea.2010.09.073

Google Scholar

[11] Tobi, A. M., Ding, J., Pearson, S., Leen, S. B., & Shipway, P. H. (2010). The effect of gross sliding fretting wear on stress distributions in thin W-DLC coating systems. Tribology International, 43(10), 1917-1932.

DOI: 10.1016/j.triboint.2010.01.018

Google Scholar

[12] Tobi, A. M., Shipway, P. H., & Leen, S. B. (2011). Gross slip fretting wear performance of a layered thin W-DLC coating: Damage mechanisms and life modelling. Wear, 271(9-10), 1572-1584.

DOI: 10.1016/j.wear.2010.12.073

Google Scholar

[13] Johnson, K. L., & Johnson, K. L. (1987). Contact mechanics. Cambridge university press.

Google Scholar

[14] Kataria, S., Goyal, S., Dash, S., Sandhya, R., Mathew, M. D., & Tyagi, A. K. (2012). Evaluation of nano-mechanical properties of hard coatings on a soft substrate. Thin Solid Films, 522, 297-303.

DOI: 10.1016/j.tsf.2012.09.001

Google Scholar

[15] Wang, T. H., Fang, T. H., & Lin, Y. C. (2007). Analysis of the substrate effects of strain-hardening thin films on silicon under nanoindentation. Applied Physics A, 86(3), 335-341.

DOI: 10.1007/s00339-006-3779-6

Google Scholar