[1]
A. Andrés-Bello, P. García-Segovia, J. Martínez-Monzó , Vacuum Frying: An Alternative to Obtain High-Quality Dried Products, Food Eng. Rev. 3(2011) Article number: 63 (2011).
DOI: 10.1007/s12393-011-9037-5
Google Scholar
[2]
X. Zhang, X. Liu, C. Yang, T. Xi, J. Zhao, L. Liu, K.Yang, New strategy to delay food spoilage: Application of new food contact material with antibacterial function, J. Mat. Sci. Tech. 70(2021) 59-66.
DOI: 10.1016/j.jmst.2020.08.045
Google Scholar
[3]
W. Sukree, D. Sooksawat, P. Kanatharana, P. Thavarungkul, C. Thammakhet-Buranachai, A miniature stainless steel net dumbbell-shaped stir-bar for the extraction of phthalate esters in instant noodle and rice soup samples, J Environ Sci Health B. 55(2020)60-68.
DOI: 10.1080/03601234.2019.1659053
Google Scholar
[4]
V. Vishwakarma, Impact of environmental biofilms: Industrial components and its remediation, J. Basic Microbio., 60(2020)198-206.
DOI: 10.1002/jobm.201900569
Google Scholar
[5]
C.M.G. Charoux, L. Free, L.M. Hinds, R.K. Vijayaraghavan, S. Daniels, C.P. O'Donnell, B.K. Tiwari, Effect of non-thermal plasma technology on microbial inactivation and total phenolic content of a model liquid food system and black pepper grains, LWT, 118(2020)108716.
DOI: 10.1016/j.lwt.2019.108716
Google Scholar
[6]
A.A. Nazeer, M. Madkour, Potential use of smart coatings for corrosion protection of metals and alloys: A review, J. Mol. Liq. 253(2018)11-22.
DOI: 10.1016/j.molliq.2018.01.027
Google Scholar
[7]
T. Wu, C. Sun, W. Ke, Interpreting microbiologically assisted cracking with Ee-pH diagrams, Bioelectrochem. 120(2018)57-65.
DOI: 10.1016/j.bioelechem.2017.11.007
Google Scholar
[8]
R. Wang, M.M. Farid, Corrosion and health aspects in ohmic cooking of beef meat patties, J. Food Eng. 146(2015)17-22.
DOI: 10.1016/j.jfoodeng.2014.08.011
Google Scholar
[9]
C. Padovani, O.E. Albores-Silva, E.A. Charles, Corrosion Control of Stainless Steels in Indoor Atmospheres—Laboratory Measurements Under MgCl2 Deposits at Constant Relative Humidity (Part 1), Corr. 71(2015) 292–304.
DOI: 10.5006/1437
Google Scholar
[10]
H.R. El-Ramady, É. Domokos-Szabolcsy, N.A. Abdalla, H.S. Taha, M. Fári, Postharvest Management of Fruits and Vegetables Storage, Sust. Agri. Rev. 15(2014)65-152.
DOI: 10.1007/978-3-319-09132-7_2
Google Scholar
[11]
J. Pan, Z. Zhang, Z. Zhan, Y. Xiong, Y. Wang, K. Cao, Y. Chen, In situ generation of silver nanoparticles and nanocomposite films based on electrodeposition of carboxylated chitosan, Carb. Pol. 242(2020)116391.
DOI: 10.1016/j.carbpol.2020.116391
Google Scholar
[12]
M. Islam, N. Arya, P.G. Weidler, J.G. Korvink, V. Badilita, Electrodeposition of chitosan enables synthesis of copper/carbon composites for H2O2 sensing, Mat. Today Chem. 17(2020) 100338.
DOI: 10.1016/j.mtchem.2020.100338
Google Scholar
[13]
S.(Gabriel)Kou, L.M. Peters, M.R. Mucalo, Chitosan: A review of sources and preparation methods, Int. J. Bio. Macromol. 169(2021)85-94.
Google Scholar
[14]
I. Bano, M. Arshad, T. Yasin, M.A. Ghauri, M. Younus, Chitosan: A potential biopolymer for wound management, Int. J. Bio. Macromol. 102(2017)380-383.
DOI: 10.1016/j.ijbiomac.2017.04.047
Google Scholar
[15]
T. Furuike, D. Komoto, H. Hashimoto, H. Tamura, Preparation of chitosan hydrogel and its solubility in organic acids, Int. J. Bio. Macromol. 104(2017)1620-1625.
DOI: 10.1016/j.ijbiomac.2017.02.099
Google Scholar
[16]
C.N. Costa, V.G. Teixeira, M.C. Delpech, J.V.S. Souza, M.A.S. Costa, Viscometric study of chitosan solutions in acetic acid/sodium acetate and acetic acid/sodium chloride, Carb. Pol. 133 (2015)245-250.
DOI: 10.1016/j.carbpol.2015.06.094
Google Scholar