Hardness and Wear Properties of Al-TiN Coatings Produced by DC Sputtering

Article Preview

Abstract:

Aluminum is a lightweight material that is commonly used in engine components. However, aluminum's low hardness and wear resistance, requires special treatment before being used as a component. Increasing the hardness and wear resistance of aluminum can be done by coating Titanium Nitride (TiN) with the sputtering method. In this study, the effect of sputtering time on Al-TiN coating on hardness and wear resistance was obtained. The deposition of titanium nitride thin films on aluminum using a gas ratio of Ar: N ((70:30%) with varied treatment times of 30, 60, 90, and 120 minutes. Hardness and wear resistance were observed using Vickers hardness tester and Ogoshi High-Speed Universal. Whereas the morphology of the wear surface was observed by SEM. The result shows that the treatment time of 60 minutes obtained the highest hardness and minimum specific wear rate.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1051)

Pages:

147-152

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Y. Zhang and M. F. Yan, Microstructure and mechanical properties of multiphase coating produced by plasma nitriding Ti coated GB-5083 aluminum alloy,, Surf. Coatings Technol., vol. 253, p.268–276, (2014).

DOI: 10.1016/j.surfcoat.2014.05.055

Google Scholar

[2] T. Tjahjono, T. W. B. Riyadi, B. W. Febriantoko, Margono, Suprapto, and T. Sujitno, Hardness optimization based on nitriding time and gas pressure in the plasma nitriding of aluminium alloys,, Mater. Sci. Forum, vol. 961 MSF, p.112–117, (2019).

DOI: 10.4028/www.scientific.net/msf.961.112

Google Scholar

[3] A. S. Darmawan, T. W. B. Riyadi, A. Hamid, B. W. Febriantoko, and B. S. Putra, Corrosion resistance improvement of aluminum under anodizing process,, AIP Conf. Proc., vol. 1977, no. June 2018, (2018).

DOI: 10.1063/1.5042862

Google Scholar

[4] E. Santecchia, A. M. S. Hamouda, F. Musharavati, E. Zalnezhad, M. Cabibbo, and S. Spigarelli, Wear resistance investigation of titanium nitride-based coatings,, Ceram. Int., vol. 41, no. 9, p.10349–10379, (2015).

DOI: 10.1016/j.ceramint.2015.04.152

Google Scholar

[5] C. M. Abreu, M. J. Cristóbal, R. Figueroa, and G. Pena, Wear and corrosion performance of two different tempers (T6 and T73) of AA7075 aluminium alloy after nitrogen implantation,, Appl. Surf. Sci., vol. 327, p.51–61, (2015).

DOI: 10.1016/j.apsusc.2014.11.111

Google Scholar

[6] T. W. B. Riyadi, T. Tjahjono, Sarjito, Margono, Suprapto, and T. Sujitno, Wear and Corrosion Resistance of Aluminium Nitride Produced by DC Glow Discharge,, Adv. Sci. Lett., vol. 53, no. 9, p.1689–1699, (2018).

DOI: 10.1166/asl.2018.12080

Google Scholar

[7] T. W. B. Riyadi, Sarjito, A. D. Anggono, Masyrukan, and A. Eryawan, Effect of Ni underlayer thickness on the hardness and specific wear rate of Cu in the laminated Ni/Cu coatings produced by electroplating,, AIP Conf. Proc., vol. 1977, (2018).

DOI: 10.1063/1.5042970

Google Scholar

[8] S. R. More, D. V. Bhatt, and J. V. Menghani, Recent Research Status on Erosion Wear - An Overview,, Mater. Today Proc., vol. 4, no. 2, p.257–266, (2017).

DOI: 10.1016/j.matpr.2017.01.020

Google Scholar

[9] K. Kato and K. Adachi, Wear Mechanisms. Tohoku University, (2001).

Google Scholar

[10] M. Kumar, S. Mishra, and R. Mitra, Effect of Ar : N 2 ratio on structure and properties of Ni – TiN nanocomposite thin films processed by reactive RF / DC magnetron sputtering,, Surf. Coat. Technol., vol. 228, p.100–114, (2013).

DOI: 10.1016/j.surfcoat.2013.04.014

Google Scholar

[11] A. Samanta et al., Nano- and micro-tribological behaviours of plasma nitrided Ti6Al4Valloys,, J. Mech. Behav. Biomed. Mater., (2017).

Google Scholar

[12] K. Shukla, R. Rane, J. Alphonsa, P. Maity, and S. Mukherjee, Structural, mechanical and corrosion resistance properties of Ti/TiN bilayers deposited by magnetron sputtering on AISI 316L,, Surf. Coatings Technol., vol. 324, p.167–174, (2017).

DOI: 10.1016/j.surfcoat.2017.05.075

Google Scholar

[13] Y. X. Ou, J. Lin, H. L. Che, J. J. Moore, W. D. Sproul, and M. K. Lei, Mechanical and tribological properties of CrN/TiN superlattice coatings deposited by a combination of arc-free deep oscillation magnetron sputtering with pulsed dc magnetron sputtering,, Thin Solid Films, vol. 594, p.147–155, (2015).

DOI: 10.1016/j.tsf.2015.09.067

Google Scholar

[14] S. Ghasemi, A. Shanaghi, and P. K. Chu, Corrosion behavior of reactive sputtered Ti/TiN nanostructured coating and effects of intermediate titanium layer on self-healing properties,, Surf. Coatings Technol., vol. 326, p.156–164, (2017).

DOI: 10.1016/j.surfcoat.2017.07.046

Google Scholar

[15] T. W. B. Riyadi et al., Effect of Sputtering Times on the Properties of NiCr-Al,, AIP Conf. Proc., vol. 20031, (2018).

Google Scholar

[16] T. W. B. Riyadi and Masyrukan, Hardness and wear properties of laminated Cr-Ni coatings formed by electroplating,, AIP Conf. Proc., vol. 1831, p.20034–6, (2017).

DOI: 10.1063/1.4981175

Google Scholar

[17] A. H. Simon, Sputter processing. Elsevier Inc., (2018).

Google Scholar

[18] K. K. Schuegraf and K. Seshan, Handbook of thin film deposition processes and techniques, vol. 101. (2002).

Google Scholar

[19] M. K. L. Y.X. Ou, J. Lin, H.L. Che, J.J. Moore, W.D. Sproul, Mechanical and tribological properties of CrN/TiN superlattice coatings deposited by a combination of arc-free deep oscillation magnetron sputtering with pulsed dc magnetron sputtering,, Thin Solid Films, (2015).

DOI: 10.1016/j.tsf.2015.09.067

Google Scholar

[20] M. R. Chavda, D. P. Dave, K. V Chauhan, and S. K. Rawal, Tribological characterization of TiN coatings prepared by sputtering,, Procedia Technol., vol. 23, p.36–41, (2016).

DOI: 10.1016/j.protcy.2016.03.070

Google Scholar

[21] D. feng Zhen yan, Dong jiang, Xiaoming gao, Ming hu, Desheng wang, Yanlong fu, Jiayi sun and L. Weng, Friction and wear behavior of TiN films against ceramic and steel balls,, Tribol. Int., (2018).

DOI: 10.1016/j.triboint.2018.03.031

Google Scholar

[22] L. Zhang, H. Yang, X. Pang, K. Gao, and A. A. Volinsky, Microstructure, residual stress, and fracture of sputtered TiN films,, Surf. Coatings Technol., vol. 224, p.120–125, (2013).

DOI: 10.1016/j.surfcoat.2013.03.009

Google Scholar

[23] B. H. Priyambodo, The Influence of TiN-Sputtering on Hardness and Corrosion Rate of AISI 304 for Biomaterials Application,, J. Corros. Sci. Eng., vol. 20, no. 101, p.1–8, (2017).

Google Scholar

[24] J. Qiaoling, W. Haidou, L. Guolu, Z. Jianjun, and L. Jinna, Microstructures and mechanical properties of TiN/CrN multilayer films,, Rare Met. Mater. Eng., vol. 46, no. 10, p.2857–2862, (2017).

DOI: 10.1016/s1875-5372(18)30020-1

Google Scholar

[25] D. Bhattacharyya, N. A. Mara, R. G. Hoagland, and A. Misra, Nanoindentation and microstructural studies of Al / TiN multilayers with unequal volume fractions,, vol. 58, p.981–984, (2008).

DOI: 10.1016/j.scriptamat.2008.01.054

Google Scholar

[26] V. Malau, B. H. Priyambodo, P. T. Iswanto, T. Sujitno, and Suprapto, Increased hardness, corrosion resistant and corrosion fatigue cracking performance on AISI 304 by DC sputtering,, Int. Rev. Mech. Eng., vol. 12, no. 12, p.975–980, (2018).

DOI: 10.15866/ireme.v12i12.15901

Google Scholar

[27] S. Talu, S. Stach, S. Valedbagi, S. mohammad Elahi, and R. Bavadi, Surface morphology of titanium nitride thin films synthesized by DC reactive magnetron sputtering,, Mater. Sci., vol. 33, no. 1, p.137–143, (2015).

DOI: 10.1515/msp-2015-0010

Google Scholar

[28] T. P. D. Rajan, R. M. Pillai, and B. C. Pai, Functionally graded Al – Al 3 Ni in situ intermetallic composites : Fabrication and microstructural characterization,, J. Alloys Compd., vol. 453, no. L4–L7, p.2006–2009, (2008).

DOI: 10.1016/j.jallcom.2006.11.181

Google Scholar

[29] N. J. M. Carvalho, E. Zoestbergen, B. J. Kooi, and J. T. M. De Hosson, Stress analysis and microstructure of PVD monolayer TiN and multilayer TiN/(Ti,Al)N coatings,, Thin Solid Films, vol. 429, no. 1–2, p.179–189, (2003).

DOI: 10.1016/s0040-6090(03)00067-1

Google Scholar