Viscosity of Microdestruction of Multilayer Composite and Method of its Revealing

Article Preview

Abstract:

A technique for creating multilayer composites has been developed. Mechanical properties of two-layer composites without carbon nanotubes and with carbon nanotubes were carried out by the method of local loading. The dependences of microhardness on the magnitude of the load and the depth of indentation were determined. An equation for determining the coefficient of microdestruction viscosity for two-layer composite material has been developed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1052)

Pages:

110-115

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Safronov, A. Ushakov, Effect of simultaneous improvement of plasticity and microhardness of an amorphous-nanocrystalline material based on Co, as a result of laser processing of nanosecond duration, Materials Today: Proceedings. 38(4) (2021) 1516-1520.

DOI: 10.1016/j.matpr.2020.08.141

Google Scholar

[2] I.V. Ushakov, A.Yu. Batomunkuev, RU Patent 2,561,788 C1. (2015).

Google Scholar

[3] V.N. Shinkin, Springback coefficient of round steel beam under elastoplastic torsion, CIS Iron and Steel Review. 15 (2018) 23-27.

DOI: 10.17580/cisisr.2018.01.05

Google Scholar

[4] V.N. Shinkin, Simple analytical dependence of elastic modulus on high temperatures for some steels and alloys, CIS Iron and Steel Review. 15 (2018) 32-38.

DOI: 10.17580/cisisr.2018.01.07

Google Scholar

[5] V.N. Shinkin, Elastoplastic flexure of round steel beams. 1. Springback coefficient, Steel in Translation. 48(3) (2018) 149-153.

DOI: 10.3103/s0967091218030117

Google Scholar

[6] V.N. Shinkin, Elastoplastic flexure of round steel beams. 2. Residual stress, Steel in Translation. 48(11) (2018) 718-723.

DOI: 10.3103/s0967091218110098

Google Scholar

[7] V.N. Shinkin, Preliminary straightening of steel strip, Chernye Metally. 5 (2018) 34-40.

Google Scholar

[8] V.N. Shinkin, Direct and inverse non-linear approximation of hardening zone of steel, Chernye Metally. 3 (2019) 32-37.

Google Scholar

[9] I.V. Ushakov, Regularities of local deformation and destruction of thin strips of metal glass 82K3XSR during pulsed laser processing, Physics and Chemistry of Materials Processing. 5 (2006) 24-28.

Google Scholar

[10] I.V. Ushakov, V.M. Polikarpov, Tests thin ribbons of metallic glass indenters of various geometric shapes, Industrial laboratory. Materials Diagnostics. 73(2) (2007) 43-47.

Google Scholar

[11] I.V. Ushakov, I.S. Safronov, RU Patent 2,494,039 C1. (2013).

Google Scholar

[12] B.R. Lawn, D. B. Marshall, Hardness, toughness and brittleness: An indentation analysis, Journal of the American Ceramic Society. 62(7) (2010) 347-350.

DOI: 10.1111/j.1151-2916.1979.tb19075.x

Google Scholar

[13] B. Jonsson, S. Hogmark, Hardness Measurements of Thin Films, Uppsala University, (1984).

Google Scholar

[14] D.N. Chausov, A.D. Kurilov, V.V. Belyaev, Liquid crystal nanocomposites doped with rare earth elements, Liquid Crystals and Their Application. 20(2) (2020) 6-22.

DOI: 10.18083/lcappl.2020.2.6

Google Scholar

[15] V.V. Osipova, A.D. Kurilov, Y.G. Galyametdinov, A.A. Muravsky, S. Kumar, D.N. Chausov, Optical properties of nematic liquid crystal composites with semiconducting quantum dots, Liquid Crystals and Their Application. 20(4) (2020) 84-92.

DOI: 10.18083/lcappl.2020.4.84

Google Scholar

[16] V.I. Emel¢yanov, I.F. Uvarova, Nonlinear-optical deformation of an acoustic subsystem and the superfast smoothing of semiconductor surfaces by short laser pulses, Bulletin of the Academy of Sciences of the U.S.S.R. Physical Series. 50(6) (1985) 164-169.

Google Scholar

[17] V.I. Emel¢yanov, V.S. Makin, I.F. Uvarov, Formation of ordered vacancy-deformation structures on metal surface under laser irradiation, Physics and Chemistry of Materials Treatment. 24(2) (1990) 108-114.

Google Scholar

[18] V.N. Shinkin, Residual stresses in elastoplastic bending of round bar, Materials Science Forum. 946 (2019) 862-867.

DOI: 10.4028/www.scientific.net/msf.946.862

Google Scholar

[19] V.N. Shinkin, Tubes' rupture at faulty fusion of welding seam, Materials Science Forum. 946 (2019) 868-873.

DOI: 10.4028/www.scientific.net/msf.946.868

Google Scholar

[20] A.V. Kazak, M.A. Marchenkova, T.V. Dubinina, A.I. Smirnova, L.G. Tomilova, A.V. Rogachev, D.N. Chausov, A.A. Stsiapanau, N.V. Usol¢tseva, Self-organization of octa-phenyl-2,3-naphthalocyaninato zinc floating layers, New Journal of Chemistry. 44 (2020) 3833-3837.

DOI: 10.1039/c9nj06041c

Google Scholar

[21] E.N. Vasilchikova, M.S. Konstantinov, V.I. Mashchenko, R.N. Kucherov, D.N. Chausov, A.K. Dadivanyan, Specific features of crystallization process of 4,4¢-azoxyanisole in the form of multiple coffee rings,, Liquid Crystals and Their Application. 20(1) (2020) 47-52.

DOI: 10.18083/lcappl.2020.1.47

Google Scholar

[22] I.V. Ushakov, Yu.V. Simonov, Formation of surface properties of VT18u titanium alloy by laser pulse treatment, Materials Today: Proceedings. 19(5) (2019) 2051-2055.

DOI: 10.1016/j.matpr.2019.07.072

Google Scholar

[23] I.V. Ushakov, V.A. Feodorov, I.J. Permyakova, Mechanical characteristics and crystallization of annealed metallic glass 82K3XCP, Proceedings of SPIE – The International Society for Optical Engineering. 5400 (2004) 261-264.

DOI: 10.1117/12.555528

Google Scholar

[24] V.N. Shinkin, Influence of non-linearity of hardening curve on elasticoplastic bend of rectangular rod, CIS Iron and Steel Review. 17 (2019) 39-42.

DOI: 10.17580/cisisr.2019.01.07

Google Scholar

[25] V.N. Shinkin, Bending steel billet on presses of tube electrical welding aggregation, Solid State Phenomena. 316 (2021) 300-305.

DOI: 10.4028/www.scientific.net/ssp.316.300

Google Scholar

[26] I.V. Ushakov, Method of mechanical testing of laser treated metallic glass by indenters with different geometry, Proceedings of SPIE - The International Society for Optical Engineering. 6597 (2007) 181-185.

DOI: 10.1117/12.726773

Google Scholar

[27] I.V. Ushakov, How a crack and the defect material in its neighborhood affect the radiation strength of transparent materials, Journal of Optical Technology. 75(2) (2008) 128-131.

DOI: 10.1364/jot.75.000128

Google Scholar