Interaction of Ferromagnetically Ordered Clusters with Dislocations in Austenite and Twinning

Article Preview

Abstract:

The relationship between the interaction of ferromagnetically ordered clusters in austenite with dislocations, twinning and nucleation of the martensite phase is considered. It is shown that the regions with short-range order existing in austenite affect the dislocation structure. In turn, dislocations are involved in the formation of twins and martensite nuclei. The imposition of an external magnetic field enhances the magnetic inhomogeneity of austenite and the effects of magnetoelastic interaction between clusters and dislocations.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1052)

Pages:

134-139

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.G. Crocker, The role of twinning in martensite transformations, in: Deformation Twinning, Gordon-Breach Sci. Publ.New York, London, (1964).

Google Scholar

[2] Z. Nishiyama, Martensitic Transformation, Elsevier, (2012).

Google Scholar

[3] V.A. Lobodyuk, E.I. Estrin, Martensitic Transformations, Cambridge International Science Publishing, (2014).

Google Scholar

[4] G.B. Olson, W.S. Owen, Martensite: A Tribute to Morris Cohen, ASM International, (1992).

Google Scholar

[5] V.N. Pustovoit, Y.V. Dolgachev, L.P. Aref'Eva, Martensite Nucleation under conditions of austenite superplasticity and external magnetic field, IOP Conference Series: Materials Science and Engineering. 969 (2020) 012009.

DOI: 10.1088/1757-899x/969/1/012009

Google Scholar

[6] M.Y. Semenov, V.S. Kraposhin, A.L. Talis, N.D. Simich-Lafitskii, Transfer of diagonals in a rhombus: Elementary act of polymorphic transformation. Analysis of the energy threshold of transformation in metals, Metal Science and Heat Treatment. 62 (2020) 109-118.

DOI: 10.1007/s11041-020-00522-3

Google Scholar

[7] V.N. Pustovoit, Y.V. Dolgachev, Y.M. Dombrovskii, Y.A. Kornilov, On shear nucleation sites at phase transformations in steel, Izvestiya Ferrous Metallurgy. 61 (2018) 114-119.

DOI: 10.17073/0368-0797-2018-2-114-119

Google Scholar

[8] V.N. Gridnev, Y.N. Petrov, Fine structure of martensite in carbon steels, Metal Science and Heat Treatment. 9 (1967) 586-590.

DOI: 10.1007/bf00654293

Google Scholar

[9] V.N. Pustovoit, Yu.V. Dolgachev, Revisiting the nature of sites of martensite nucleation during steel hardening, Izvestiya Ferrous Metallurgy. 62 (2019) 109-114.

DOI: 10.17073/0368-0797-2019-2-109-114

Google Scholar

[10] V.N. Pustovoit, Y.V. Dolgachev, Ferromagnetically ordered clusters in austenite as the areas of martensite formation, Emerg. Mater. Research. 6 (2017) 249-253.

DOI: 10.1680/jemmr.17.00042

Google Scholar

[11] S. Spooner, B.L. Averbach, Spin correlations in iron, Physical Review. 142 (1966) 291-299.

DOI: 10.1103/physrev.142.291

Google Scholar

[12] V.N. Pustovoit, Y.V. Dolgachev, L.P. Aref'eva, Features of martensitic transformation in steel during quenching in a constant magnetic field, Mater. Sci. Forum. 946 (2019) 304-308.

DOI: 10.4028/www.scientific.net/msf.946.304

Google Scholar

[13] R. Berner, H. Kronmüller, Verformung von Einkristallen, InFehlstellen, Plastizität, Strahlenschädigung und Elektronentheorie, Springer-Verlag, Berlin, Heidelberg, (1965).

DOI: 10.1007/978-3-662-36729-2_2

Google Scholar

[14] S. Chikazumi, C.D. Graham, Physics of Ferromagnetism, in: C.D. Graham (Eds.), Issue 94 of International Series of Monographs on Physics, Oxford Science Publications, 2009, 655 p.

Google Scholar

[15] Yu.V. Dolgachev, V.N. Pustovoit, I.O. Filonenko, I.V. Ivankov, On modeling the martensite nucleation on ferromagnetic clusters, Vestnik of Don State Technical University. 20 (2020) 51-60.

DOI: 10.23947/1992-5980-2020-20-1-51-60

Google Scholar

[16] P.Yu. Volosevich, V.N. Gridnev, Yu.N Petrov, Investigation of the structural changes of austenite during the martensitic transformation in steels with higher stacking fault energy, Physics of Metals and Metallography. 34 (1972) 108-113.

Google Scholar

[17] V.N. Gridnev, Y.N. Petrov, Fine structure of martensite in carbon steels, Metal Science and Heat Treatment. 9 (1967) 586-590.

DOI: 10.1007/bf00654293

Google Scholar

[18] V.I. Izotov, L.M. Utevskii, Effect of carbon on the forming of the martensitic structure of high-nickel steels, Metal Science and Heat Treatment. 9 (1967) 576-585.

DOI: 10.1007/bf00654292

Google Scholar

[19] A.R. Marder, G. Krauss, The morphology of martensite in Iron-Carbon alloys, Trans. Soc. ASM. 60 (1967) 651-660.

Google Scholar

[20] K. Sminzu, C.M. Wayman, Discussion of Factors determining twinning in martensites,, Acta Metallurgica. 14 (1966) 1390-1391.

DOI: 10.1016/0001-6160(66)90258-6

Google Scholar

[21] K. Shimizu, M. Oka, C.M. Wayman, The association of martensite platelets with austenite stacking faults in an Fe-8Cr-1C alloy, Acta Metallurgica. 18 (1970) 1005-1011.

DOI: 10.1016/0001-6160(70)90056-8

Google Scholar

[22] T.E. Mitchell, Slip in body-centred cubic crystals, Philosophical Magazine. 17 (1968) 1169-1194.

DOI: 10.1080/14786436808223194

Google Scholar

[23] R.P. Zerwekh, C.M. Wayman, On the nature of the α→ γ transformation in iron: A study of whiskers, Acta Metallurgica. 13 (1965) 99-107.

DOI: 10.1016/0001-6160(65)90159-8

Google Scholar

[24] K.E. Easterling, G.C. Weatherly, On the nucleation of martensite in iron precipitates, Acta Metallurgica. 17 (1969) 845-852.

DOI: 10.1016/0001-6160(69)90104-7

Google Scholar

[25] G.C. Venables, The martensite transformation in stainless steel, The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics. 7 (1962) 35-44.

DOI: 10.1080/14786436208201856

Google Scholar

[26] R. Lagneborg, The martensite transformation in 18% Cr-8% Ni steels, Acta Metallurgica. 12 (1964) 823-843.

DOI: 10.1016/0001-6160(64)90176-2

Google Scholar

[27] Ya.D. Vishnyakov, G.S. Faynshteyn, Possible scheme of cyclic formation of martensite structures during plastic deformation of steels with low energy of stacking faults, Physics of Metals and Metallography. 52 (1981) 195-197.

Google Scholar

[28] G.F. Bolling, R.H. Richman, The influence of stress on martensite-start temperatures in Fe-Ni-C alloys, Scripta Metallurgica. 4 (1970) 539-543.

DOI: 10.1016/0036-9748(70)90012-8

Google Scholar