The Effect of Hole Manufacturing Technology on the Strength of Orthogonally Reinforced Fibrous Composites

Article Preview

Abstract:

The work is devoted to the analysis of the effect of holes made using various technologies on the strength of orthogonally reinforced fibrous composites. Comparison of data obtained by finite-element modeling with results of tensile experiments of composite plates with holes is given. It has been experimentally confirmed that drilling holes in fibrous composites is unacceptable: when making holes, fibers must be expanded at the stage of molding the composite element. It has also been shown that it is possible to model, if not the fiber structure itself, but the properties of the material next to the hole using the built-in functions of FEA programs.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1052)

Pages:

140-146

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.V. Malakhov, Design algorithm of rational fiber trajectories in arbitrarily loaded composite plate, Journal of Machinery Manufacture and Reliability. 46(5) (2017) 479-487.

DOI: 10.3103/s1052618817050090

Google Scholar

[2] C.K. Krishnadasan, N.S. Shanmugam, B. Sivasubramonian, B.N. Rao, R. Suresh, Analytical studies and numerical predictions of stresses in shear joints of layered composite panels for aerospace applications, Composite Structures. 255 (2021) 112927.

DOI: 10.1016/j.compstruct.2020.112927

Google Scholar

[3] A. Ghazlan, T. Ngo, P. Tan, Y. Min Xie, P. Tran, M. Donough, Inspiration from nature's body armours – A review of biological and bioinspired composites, Composites Part B: Engineering. 205 (2021) 108513.

DOI: 10.1016/j.compositesb.2020.108513

Google Scholar

[4] A.N. Polilov, N.A. Tatus, Strength Biomechanics of Fiber Composites, Fizmatlit, Moscow, (2018).

Google Scholar

[5] A.N. Polilov, N.A. Tatus', X. Tian, Analysis of efficiency of uniform-strength composite leaf springs under various loading conditions, Journal of Machinery Manufacture and Reliability. 48 (5) (2019) 431-439.

DOI: 10.3103/s105261881905008x

Google Scholar

[6] M. Fakoor, M.S. Khezri, A micromechanical approach for mixed mode I/II failure assessment of cracked highly orthotropic materials such as wood, Theoretical and Applied Fracture Mechanics. 109 (2020) 102740.

DOI: 10.1016/j.tafmec.2020.102740

Google Scholar

[7] S. Wasti, E. Triggs, R. Farag, M. Auad, S. Adhikari, D. Bajwa, M. Li, A.J. Ragauskas, Influence of plasticizers on thermal and mechanical properties of biocomposite filaments made from lignin and polylactic acid for 3D printing, Composites Part B: Engineering. 205 (2021) 108483.

DOI: 10.1016/j.compositesb.2020.108483

Google Scholar

[8] A.N. Polilov, N.A. Tatus, X. Tian, Analyzing the correctness of equal strength composite profiled beam bending problems, Journal of Applied Mechanics and Technical Physics. 60(1) (2019) 144-155.

DOI: 10.1134/s0021894419010188

Google Scholar

[9] R. Tao, L. Ji, Y. Li, Z. Wan, W. Hu, W. Wu, B. Liao, L. Ma, D. Fang, 4D printed origami metamaterials with tunable compression twist behavior and stress-strain curves, Composites Part B: Engineering. 201 (2020) 108344.

DOI: 10.1016/j.compositesb.2020.108344

Google Scholar

[10] Z. Hou, X. Tian, J. Zhang, Z. Zheng, L. Zhe, D. Li, A.V. Malakhov, A.N. Polilov, Optimization design and 3D printing of curvilinear fiber reinforced variable stiffness composites, Composites Science and Technology. 201 (2021) 108502.

DOI: 10.1016/j.compscitech.2020.108502

Google Scholar

[11] F. París, M.L. Velasco, E. Correa, The scale effect in composites: An explanation physically based on the different mechanisms of damage involved in failure, Composite Structures. 257 (2021) 11308.

DOI: 10.1016/j.compstruct.2020.113089

Google Scholar

[12] H. Saito, H. Takeuchi, I. Kimpara, A study of crack suppression mechanism of thin-ply carbon-fiber-reinforced polymer laminate with mesoscopic numerical simulation, Journal of Composite Materials. 48(17) (2014) 2085-2096.

DOI: 10.1177/0021998313494430

Google Scholar

[13] J. Serra, C. Bouvet, B. Castanié, C. Petiot, Scaling effect in notched composites: The discrete ply model approach, Composite Structures. 148 (2016) 127-143.

DOI: 10.1016/j.compstruct.2016.03.062

Google Scholar

[14] Y. Zhang, X. Xu, Predicting the delamination factor in carbon fibre reinforced plastic composites during drilling through the Gaussian process regression, Journal of Composite Materials. 55(15) (2021).

DOI: 10.1177/0021998320984245

Google Scholar

[15] M. Umair, M. Hussain, Z. Abbas, K. Shaker, Y. Nawab, Effect of weave architecture and glass microspheres percentage on the low velocity impact response of hemp/green epoxy composites, Journal of Composite Materials. 55(16) (2021).

DOI: 10.1177/0021998320987605

Google Scholar

[16] N.A. Tatus, A.N. Polilov, D.D. Vlasov, E.K. Akhmedshin, A special specimen shape for adequate determination of tensile strength of a unidirectional fiber-reinforced composite, AIP Conference Proceedings. 2315 (2020) 040044.

DOI: 10.1063/5.0036628

Google Scholar

[17] K.A. Brauning, A. Kunza, I.M. Alarifi, R. Asmatulu, Mitigations of machine-damaged free-edge effects on fiber-reinforced composites, Journal of Composite Materials. 55(12) (2021).

DOI: 10.1177/0021998320967987

Google Scholar

[18] A.N. Polilov, N.A. Tatus, I.S. Kamantsev, A.V. Kuznetsov, E.Kh. Akhmedshin, X. Tian, Reducing the effect of holes on the bearing capacity of fiber-reinforced materials, AIP Conference Proceedings. 2176 (2019) 030010.

DOI: 10.1063/1.5135134

Google Scholar

[19] E.Kh. Akhmedshin, A.N. Polilov, N.A. Tatus, Reducing of holes effect on composite elements strength, IOP Conference Series: Materials Science and Engineering. 848 (1) (2020) 012088.

DOI: 10.1088/1757-899x/848/1/012088

Google Scholar

[20] F.A.O. Fernandes, J.P. Tavares, R.J. Alves de Sousa, A.B. Pereira, J.L. Esteves, Manufacturing and testing composites based on natural materials, Procedia Manufacturing. 13 (2017) 227-234.

DOI: 10.1016/j.promfg.2017.09.055

Google Scholar

[21] S.W.F. Spronk, E. Verboven, F.A. Gilabert, R.D.B. Sevenois, D. Garoz, M. Kersemans, W. Van Paepegem, Stress-strain synchronization for high strain rate tests on brittle composites, Polymer Testing. 67 (2018) 477-486.

DOI: 10.1016/j.polymertesting.2018.02.008

Google Scholar

[22] A. Komorek, R.Szczepaniak, P. Przybylek, A. Krzyzak, J. Godzimirski, M. Roskowicz, D. Seremak, Properties of multi-layered polymer composites with Vectran fiber reinforcement, Composite Structures. 256 (2021) 113045.

DOI: 10.1016/j.compstruct.2020.113045

Google Scholar

[23] G. Yamamoto, K. Koizumi, T. Nakamura, N. Hirano, T. Okabe, Tensile-strength-controlling factors in unidirectional carbon fiber reinforced plastic composites, Composites Part A: Applied Science and Manufacturing. 140 (2021) 106140.

DOI: 10.1016/j.compositesa.2020.106140

Google Scholar