[1]
J. Hu, Y. Ma, X. Kan, C. Liu, X. Zhang, R. Rao, M. Wang, G. Zheng, Investigations of Co substitution on the structural and magnetic properties of Ni-Zn spinel ferrite, J. Magn. Magn. Mater. (2020) 167200.
DOI: 10.1016/j.jmmm.2020.167200
Google Scholar
[2]
S. Mazen, N.I. Abu-Elsaad, A.S. Nawara, The influence of various divalent metal ions (Mn2+, Co2+, and Cu2+) substitution on the structural and magnetic properties of Nickel–Zinc spinel ferrite, Physics of the Solid State. 62 (2020) 1183-1194.
DOI: 10.1134/s106378342007015x
Google Scholar
[3]
A. Omri, E. Dhahri, B.F.O. Costa, Structural, electric and dielectric properties of Ni0.5Zn0.5FeCoO4 ferrite prepared by sol-gel, J. Magn. Magn. Mater. 499 (2020) 166243.
DOI: 10.1016/j.jmmm.2019.166243
Google Scholar
[4]
N.I. Abu-Elsaad, A.S. Nawara, S.A. Mazen, Synthesis, structural characterization, and magnetic properties of Ni–Zn nanoferrites substituted with different metal ions (Mn2+, Co2+, and Cu2+), Journal of Physics and Chemistry of Solids. 146 (2020) 109620.
DOI: 10.1016/j.jpcs.2020.109620
Google Scholar
[5]
P. Yang, Z. Liu, H. Qi, Z. Peng, X. Fu, High-performance inductive couplers based on novel Ce3+ and Co2+ ions co-doped Ni-Zn ferrites, Ceram. Int. 45 (2019) 13685-13691.
DOI: 10.1016/j.ceramint.2019.04.063
Google Scholar
[6]
L. George, C. Viji, M. Maheen, E.M. Mohammed, Synthesis, characterization of Mg/Mn substituted Ni-Zn ferrites and mechanism of their visible light photo catalysis of Methylene Blue and Rhodamine B dyes under magnetic influence, Mater. Res. Express. 7 (2019) 015014.
DOI: 10.1088/2053-1591/ab5d26
Google Scholar
[7]
M.H. Rashid, A.K.M.A. Hossain, Structural, morphological and electromagnetic properties of Sc3+ doped Ni-Cu-Zn ferrites, Respir. Physiol. 11 (2018) 888-895.
DOI: 10.1016/j.rinp.2018.10.050
Google Scholar
[8]
M.A. Almessiere, Y. Slimani,_I.A. Auwal, S.E. Shirsath, A. Manikandan, A. Baykal, B. Ozçelik, I. Ercan, S.V. Trukhanov, D.A. Vinnik, A.V. Trukhanov, Impact of Tm3+ and Tb3+ rare earth cations on the structure and magnetic parameters of Co-Ni nanospinel ferrite, Nanomater. 10(12) (2020) 2384.
DOI: 10.3390/nano10122384
Google Scholar
[9]
N.A. Algarou, Y. Slimani, M.A. Almessiere, A. Sadaqat, A.V. Trukhanov, M.A. Gondal, A.S. Hakeem, S.V. Trukhanov, M.G. Vakhitov, D.S. Klygach, A. Manikandan, A. Baykal, Functional Sr0.5Ba0.5Sm0.02Fe11.98O4/x(Ni0.8Zn0.2-Fe2O4) hard-soft ferrite nanocomposites: Structure, magnetic and microwaveproperties, Nanomater. 10(11) (2020) 2134.
DOI: 10.3390/nano10112134
Google Scholar
[10]
P. Mathur, A. Thakur, J.H. Lee, M. Singh, Sustained electromagnetic properties of Ni-Zn-Co nanoferrites for the high-frequency applications, Mater. Lett. 64 (2010) 2738-2741.
DOI: 10.1016/j.matlet.2010.08.056
Google Scholar
[11]
S.E. Jacobo, P.G. Bercoff, Structural and electromagnetic properties of yttrium-substituted Ni-Zn ferrites, Ceram. Int. 42 (2016) 7664-7668.
DOI: 10.1016/j.ceramint.2016.01.180
Google Scholar
[12]
P.-J. Wang, D. Zhou, H.-H. Guo, W.-F. Liu, J.-Z. Su, M.-S. Fu, C. Singh, S. Trukhanov, A. Trukhanov, Ultrahigh enhancement rate of energy density of flexible polymer nanocomposites by core-shell BaTiO3@MgO structures as fillers, J. Mater. Chem. A 8 (2020) 11124-11132.
DOI: 10.1039/d0ta03304a
Google Scholar
[13]
K. Qian, Z. Yao, H. Lin, J. Zhou, A.A. Haidry, T. Qi, W. Chen, X. Guo, The influence of Nd substitution in Ni-Zn ferrites for the improved microwave absorptionproperties, Ceram. Int. 46 (2020) 227-235.
DOI: 10.1016/j.ceramint.2019.08.255
Google Scholar
[14]
L.Yu. Matzui, A.V. Trukhanov, O.S. Yakovenko, L.L. Vovchenko, V.V. Zagorodnii, V.V. Oliynyk, M.O. Borovoy, E.L. Trukhanova, K.A. Astapovich, D.V. Karpinsky, S.V. Trukhanov, Functional magnetic composites based on hexaferrites: Correlation of the composition, magnetic and high-frequency properties, Nanomater. 9(12) (2019) 1720.
DOI: 10.3390/nano9121720
Google Scholar
[15]
O.S. Yakovenko, L.Yu. Matzui, L.L. Vovchenko, A.V. Trukhanov, I.S. Kazakevich, S.V. Trukhanov, Y.I. Prylutskyy, U. Ritter, Magnetic anisotropy of the graphite nanoplatelet-epoxy and MWCNT-epoxy composites with aligned bariumferritefiller, J. Mat. Sci. 52 (2017) 5345-5358.
DOI: 10.1007/s10853-017-0776-4
Google Scholar
[16]
M.A. Almessiere, Y. Slimani, H. Güngünes, V.G. Kostishyn, S.V. Trukhanov, A.V. Trukhanov, A. Baykal, Impact of Eu3+ on substitution on structural, magnetic and microwave traits of Ni-Cu-Zn spinel ferrites, Ceram. Int. 46(2020) 11124-11131.
DOI: 10.1016/j.ceramint.2020.01.132
Google Scholar
[17]
M.A. Almessiere, A.V. Trukhanov, F.A. Khan, Y. Slimani, N. Tashkandi, V.A. Turchenko, T.I. Zubar, D.I. Tishkevich, S.V. Trukhanov, L.V. Panina, A. Baykal, Correlation between microstructure parameters and anti-canceractivity of the [Mn0.5Zn0.5](EuxNdxFe2-2x)O4 nanoferrites produced by modi-fied sol-gel and ultrasonic methods, Ceram. Int. 46 (2020) 7346-7354.
DOI: 10.1016/j.ceramint.2019.11.230
Google Scholar
[18]
A.V. Trukhanov, M.A. Almessiere, A. Baykal, S.V. Trukhanov, Y. Slimani, D.A. Vinnik, V.E. Zhivulin, A.Yu Starikov, D.S. Klygach, M.G. Vakhitov, T.I. Zubar, D.I. Tishkevich, E.L. Trukhanova, M. Zdorovets, Influence of thecharge ordering and quantum effects in heterovalent substituted hexaferrites on their microwave characteristics, J. Alloys Compd. 788 (2019) 1193-1202.
DOI: 10.1016/j.jallcom.2019.02.303
Google Scholar
[19]
D.P. Sherstyuk, A.Yu. Starikov, V.E. Zhivulin, D.A. Zherebtsov, D.A. Vinnik, Technology of obtaining Ni-Zn-Co ferrites with a spinel structure, Bulletin of the South Ural State University. Ser. Metallurgy. 21 (2021) 35-41.
DOI: 10.1016/j.ceramint.2021.01.063
Google Scholar
[20]
D.P. Sherstyuk, V.E. Zhivulin, A.Yu. Starikov, I.A. Solizoda, K.P. Pavlova, A.Yu. Punda, D.A. Zherebtsov, D.A. Vinnik, Study of structural characteristics of Ni-Zn-Co ferrospinels, Bulletin of the South Ural State University. Ser. Chemistry. 13(2021) 89-98.
DOI: 10.14529/chem200406
Google Scholar