Synthesis, Structure and Properties of Barium Ferrites BaFe11M1O19 (M= Al, Ti and Mn) Ceramics

Article Preview

Abstract:

The article shows the results of a research in which barium hexaferrite samples of the BaFe11M1O19 (M= Al, Ti and Mn) composition were obtained by solid-state synthesis. Samples substituted with titanium, aluminum, and manganese were obtained in a tubular furnace at an exposure time of 5 hours at a temperature of 1350°C, the sample, substituted with manganese, it was obtained at a temperature of 1250°C. The chemical composition was controlled using electron microscopy the samples obtained correspond to the initial composition with sufficient accuracy. Hexagonal plates represent the structure of all the obtained samples. According to X-ray phase analysis, all samples are monophasic and have the structure of barium hexaferrite. Using the data of powder X-rays, the parameters of the unit cell of the studied samples were calculated, when iron atoms are substituted by titanium or aluminum or manganese atoms, the crystal lattice is distorted, while its change is not the same for different crystallographic directions. During the doping of barium hexaferrite with titanium, aluminum or manganese atoms, the Curie temperature decreases. This is due to a decrease in the exchange interaction forces during the modification of the barium hexaferrite matrix. The aim of this study was to study the structure and change of the lattice parameters, the Curie temperature, depending on the substitution element.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1052)

Pages:

172-177

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.-Y. Song, C.L. Ordóñez-Romero, M. Wu, Millimeter Wave notch filters based on ferromagnetic resonance in hexagonal barium ferrites, Applied Physics Letters. 95 (2009) 142506.

DOI: 10.1063/1.3246170

Google Scholar

[2] M. Pardavi-Horvath, Microwave applications of soft ferrites, J. Magn. Magn. Mater. 215-216 (2000) 171-183.

DOI: 10.1016/s0304-8853(00)00106-2

Google Scholar

[3] J. Chen, P. Meng, M.Wang, G. Zhou, X. Wang, G. Xu, Electromagnetic and microwave absorption properties of BaMgxCo1−xTiFe10O19, J. Alloys Compd. 679 (2016) 335-340.

DOI: 10.1016/j.jallcom.2016.04.001

Google Scholar

[4] D.A. Vinnik, D.S. Klygach, A.S. Chernukha, V.E. Zhivulin, D.M. Galimov, A.Yu. Starikov, A.V. Rezviy, M.E. Semyonov, M.G. Vakhitov, Solid-phase synthesis of titanium substituted barium hexaferrite BaFe12–xTixO19, Bulletin of the South Ural State University. Ser. Metallurgy. 17 (2017) 28-33.

DOI: 10.14529/chem170306

Google Scholar

[5] R.C. Pullar, Hexagonal ferrites: A review of the synthesis, Properties and Applications of Hexaferrite Ceramics, Progress in Materials Science. 57 (2012) 1191-1334.

DOI: 10.1016/j.pmatsci.2012.04.001

Google Scholar

[6] D.A. Vinnik, V.E. Zhivulin, A.Yu. Starikov, S.A. Gudkova, E.A. Trofimov, A.V. Trukhanov, S.V. Trukhanov, V.A. Turchenko, V.V. Matveev, E. Lahderanta, E. Fadeev, T.I. Zubar, M.V. Zdorovets, A.L. Kozlovsky, Influence of titanium substitution on structure, magnetic and electric properties of barium hexaferrites BaFe12−xTixO19, J. Magn. Magn. Mater. 498 (2020) 166117.

DOI: 10.1016/j.jmmm.2020.166544

Google Scholar

[7] M.G. Vakhitov, D.S. Klygach, D.A. Vinnik, V.E. Zhivulin, N.S. Knyazev, Microwave properties of aluminum-substituted barium hexaferrite BaFe12-xAlxO19 ceramics in the frequency range of 32–50 GHz, J. Alloys Compd. 816 (2020) 152682.

DOI: 10.1016/j.jallcom.2019.152682

Google Scholar

[8] P.D. Thang, T.A. Ho, N.T. Dang, B.W. Lee, T.L. Phan, T.V. Manh, D.H. Kim, D.S. Yang, Mn-doped (Ba, Y)Fe12O19 hexaferrites: Crystal structure and oxidation states of Mn and Fe, Curr. Appl. Phys. 20 (2020) 1263-1267.

DOI: 10.1016/j.cap.2020.08.018

Google Scholar

[9] A. Baniasadi, A. Ghasemi, A. Nemati, M. Azami Ghadikolaei, E. Paimozd, Effect of Ti–Zn substitution on structural, magnetic and microwave absorption characteristics of strontium hexaferrite, J. Alloys Compd. 583 (2014) 325-328.

DOI: 10.1016/j.jallcom.2013.08.188

Google Scholar

[10] D.A. Vinnik, I. Zakharchuk, E. Lähderanta, BaFe10.5Mn1.5O19 single crystal growth., Bulletin of the South Ural State University. Ser. Metallurgy. 16 (2016) 28-33.

DOI: 10.14529/met160204

Google Scholar

[11] A. Baykal, H. Güngüneş, H. Sözeri, Md. Amir, I. Auwal, S. Asiri, S.E. Shirsath, A. Demir Korkmaz, Magnetic properties and Mössbauer spectroscopy of Cu-Mn substituted BaFe12O19 hexaferrites, Ceram. Int. 43 (2017) 15486-15492.

DOI: 10.1016/j.ceramint.2017.08.096

Google Scholar

[12] G. Teh, S. Nagalingam, D. Jefferson, Preparation and studies of Co(II) and Co(III)-substituted barium ferrite prepared by Sol–gel method, Mater. Chem. Phys. 101 (2007) 158-162.

DOI: 10.1016/j.matchemphys.2006.03.008

Google Scholar

[13] M. Jazirehpour, M.H. Shams, O. Khani, Modified Sol–gel synthesis of nanosized magnesium titanium substituted barium hexaferrite and investigation of the effect of high substitution levels on the magnetic properties, Journal of Alloys and Compounds. 545 (2012) 32-40.

DOI: 10.1016/j.jallcom.2012.08.043

Google Scholar

[14] S.L. Hu, J. Liu, H.Y. Yu, Z.W. Liu, Synthesis and properties of barium ferrite nano-powders by chemical Co-precipitation method, J. Magn. Magn. Mater. 473 (2019) 79-84.

DOI: 10.1016/j.jmmm.2018.10.044

Google Scholar

[15] R.E. El Shater, E.H. El-Ghazzawy, M.K. El-Nimr, Study of the sintering temperature and the sintering time period effects on the structural and magnetic properties of M-type hexaferrite BaFe12O19, J. Alloys Compd. 739 (2018) 327-334.

DOI: 10.1016/j.jallcom.2017.12.228

Google Scholar

[16] L. Zhao, X. Lv, Y.Wei, C. Ma, L. Zhao, Hydrothermal synthesis of pure BaFe12O19 hexaferrite nanoplatelets under high alkaline system, J. Magn. Magn. Mater. 332 (2013) 44-47.

DOI: 10.1016/j.jmmm.2012.11.056

Google Scholar

[17] D. Vinnik, A. Tarasova, D. Zherebtsov, S. Gudkova, D. Galimov, V. Zhivulin, E. Trofimov, S. Nemrava, N. Perov, L. Isaenko, R. Niewa, Magnetic and structural properties of barium hexaferrite BaFe12O19 from various growth techniques, Materials. 10 (2017) 578.

DOI: 10.3390/ma10060578

Google Scholar

[18] Sh.Sh. Bashkirov, A.B. Liberman, A.A. Vallilin, L.D. Zaripova, S.C. Kokin, Influence of Mn2+ ions on the magnetic microstructure of hexaferrites, J. Solid State Phys. 1 (2000) 76-80.

DOI: 10.1134/1.1131171

Google Scholar

[19] H. Sözeri, H. Deligöz, H. Kavas, A. Baykal, Magnetic, Dielectric and microwave properties of M–Ti substituted barium hexaferrites (M=Mn2+, Co2+, Cu2+, Ni2+, Zn2+), Ceram. Int. 40 (2014) 8645-8657.

DOI: 10.1016/j.ceramint.2014.01.082

Google Scholar

[20] W.D. Townes, J.H. Fang, A.J. Perrotta, The crystal structure and refinement of ferrimagnetic barium ferrite, BaFe12O19, Zeitschrift für Kristallographie. 125 (1967) 437-449.

DOI: 10.1524/zkri.1967.125.125.437

Google Scholar