[1]
Y.-Y. Song, C.L. Ordóñez-Romero, M. Wu, Millimeter Wave notch filters based on ferromagnetic resonance in hexagonal barium ferrites, Applied Physics Letters. 95 (2009) 142506.
DOI: 10.1063/1.3246170
Google Scholar
[2]
M. Pardavi-Horvath, Microwave applications of soft ferrites, J. Magn. Magn. Mater. 215-216 (2000) 171-183.
DOI: 10.1016/s0304-8853(00)00106-2
Google Scholar
[3]
J. Chen, P. Meng, M.Wang, G. Zhou, X. Wang, G. Xu, Electromagnetic and microwave absorption properties of BaMgxCo1−xTiFe10O19, J. Alloys Compd. 679 (2016) 335-340.
DOI: 10.1016/j.jallcom.2016.04.001
Google Scholar
[4]
D.A. Vinnik, D.S. Klygach, A.S. Chernukha, V.E. Zhivulin, D.M. Galimov, A.Yu. Starikov, A.V. Rezviy, M.E. Semyonov, M.G. Vakhitov, Solid-phase synthesis of titanium substituted barium hexaferrite BaFe12–xTixO19, Bulletin of the South Ural State University. Ser. Metallurgy. 17 (2017) 28-33.
DOI: 10.14529/chem170306
Google Scholar
[5]
R.C. Pullar, Hexagonal ferrites: A review of the synthesis, Properties and Applications of Hexaferrite Ceramics, Progress in Materials Science. 57 (2012) 1191-1334.
DOI: 10.1016/j.pmatsci.2012.04.001
Google Scholar
[6]
D.A. Vinnik, V.E. Zhivulin, A.Yu. Starikov, S.A. Gudkova, E.A. Trofimov, A.V. Trukhanov, S.V. Trukhanov, V.A. Turchenko, V.V. Matveev, E. Lahderanta, E. Fadeev, T.I. Zubar, M.V. Zdorovets, A.L. Kozlovsky, Influence of titanium substitution on structure, magnetic and electric properties of barium hexaferrites BaFe12−xTixO19, J. Magn. Magn. Mater. 498 (2020) 166117.
DOI: 10.1016/j.jmmm.2020.166544
Google Scholar
[7]
M.G. Vakhitov, D.S. Klygach, D.A. Vinnik, V.E. Zhivulin, N.S. Knyazev, Microwave properties of aluminum-substituted barium hexaferrite BaFe12-xAlxO19 ceramics in the frequency range of 32–50 GHz, J. Alloys Compd. 816 (2020) 152682.
DOI: 10.1016/j.jallcom.2019.152682
Google Scholar
[8]
P.D. Thang, T.A. Ho, N.T. Dang, B.W. Lee, T.L. Phan, T.V. Manh, D.H. Kim, D.S. Yang, Mn-doped (Ba, Y)Fe12O19 hexaferrites: Crystal structure and oxidation states of Mn and Fe, Curr. Appl. Phys. 20 (2020) 1263-1267.
DOI: 10.1016/j.cap.2020.08.018
Google Scholar
[9]
A. Baniasadi, A. Ghasemi, A. Nemati, M. Azami Ghadikolaei, E. Paimozd, Effect of Ti–Zn substitution on structural, magnetic and microwave absorption characteristics of strontium hexaferrite, J. Alloys Compd. 583 (2014) 325-328.
DOI: 10.1016/j.jallcom.2013.08.188
Google Scholar
[10]
D.A. Vinnik, I. Zakharchuk, E. Lähderanta, BaFe10.5Mn1.5O19 single crystal growth., Bulletin of the South Ural State University. Ser. Metallurgy. 16 (2016) 28-33.
DOI: 10.14529/met160204
Google Scholar
[11]
A. Baykal, H. Güngüneş, H. Sözeri, Md. Amir, I. Auwal, S. Asiri, S.E. Shirsath, A. Demir Korkmaz, Magnetic properties and Mössbauer spectroscopy of Cu-Mn substituted BaFe12O19 hexaferrites, Ceram. Int. 43 (2017) 15486-15492.
DOI: 10.1016/j.ceramint.2017.08.096
Google Scholar
[12]
G. Teh, S. Nagalingam, D. Jefferson, Preparation and studies of Co(II) and Co(III)-substituted barium ferrite prepared by Sol–gel method, Mater. Chem. Phys. 101 (2007) 158-162.
DOI: 10.1016/j.matchemphys.2006.03.008
Google Scholar
[13]
M. Jazirehpour, M.H. Shams, O. Khani, Modified Sol–gel synthesis of nanosized magnesium titanium substituted barium hexaferrite and investigation of the effect of high substitution levels on the magnetic properties, Journal of Alloys and Compounds. 545 (2012) 32-40.
DOI: 10.1016/j.jallcom.2012.08.043
Google Scholar
[14]
S.L. Hu, J. Liu, H.Y. Yu, Z.W. Liu, Synthesis and properties of barium ferrite nano-powders by chemical Co-precipitation method, J. Magn. Magn. Mater. 473 (2019) 79-84.
DOI: 10.1016/j.jmmm.2018.10.044
Google Scholar
[15]
R.E. El Shater, E.H. El-Ghazzawy, M.K. El-Nimr, Study of the sintering temperature and the sintering time period effects on the structural and magnetic properties of M-type hexaferrite BaFe12O19, J. Alloys Compd. 739 (2018) 327-334.
DOI: 10.1016/j.jallcom.2017.12.228
Google Scholar
[16]
L. Zhao, X. Lv, Y.Wei, C. Ma, L. Zhao, Hydrothermal synthesis of pure BaFe12O19 hexaferrite nanoplatelets under high alkaline system, J. Magn. Magn. Mater. 332 (2013) 44-47.
DOI: 10.1016/j.jmmm.2012.11.056
Google Scholar
[17]
D. Vinnik, A. Tarasova, D. Zherebtsov, S. Gudkova, D. Galimov, V. Zhivulin, E. Trofimov, S. Nemrava, N. Perov, L. Isaenko, R. Niewa, Magnetic and structural properties of barium hexaferrite BaFe12O19 from various growth techniques, Materials. 10 (2017) 578.
DOI: 10.3390/ma10060578
Google Scholar
[18]
Sh.Sh. Bashkirov, A.B. Liberman, A.A. Vallilin, L.D. Zaripova, S.C. Kokin, Influence of Mn2+ ions on the magnetic microstructure of hexaferrites, J. Solid State Phys. 1 (2000) 76-80.
DOI: 10.1134/1.1131171
Google Scholar
[19]
H. Sözeri, H. Deligöz, H. Kavas, A. Baykal, Magnetic, Dielectric and microwave properties of M–Ti substituted barium hexaferrites (M=Mn2+, Co2+, Cu2+, Ni2+, Zn2+), Ceram. Int. 40 (2014) 8645-8657.
DOI: 10.1016/j.ceramint.2014.01.082
Google Scholar
[20]
W.D. Townes, J.H. Fang, A.J. Perrotta, The crystal structure and refinement of ferrimagnetic barium ferrite, BaFe12O19, Zeitschrift für Kristallographie. 125 (1967) 437-449.
DOI: 10.1524/zkri.1967.125.125.437
Google Scholar