[1]
I. Hemmati, J.C. Rao, V. Ocelík, J.T.M. De Hosson, Electron microscopy characterization of Ni-Cr-B-Si-C laser deposited coatings, Microsc. Microanal. 19 (2013) 120-131.
DOI: 10.1017/s1431927612013839
Google Scholar
[2]
I. Hemmati, V. Ocelik, K. Csach, J.T.M. De Hosson, Microstructure and phase formation in a rapidly solidified laser-deposited Ni-Cr-B-Si-C hardfacing alloy, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 45 (2014) 878-892.
DOI: 10.1007/s11661-013-2004-4
Google Scholar
[3]
T. Hejwowski, S. Szewczyk, A. Weroński, An investigation of the abrasive and erosive wear of flame-sprayed coatings, J. Mater. Process. Technol. 106 (2000) 54-57.
DOI: 10.1016/s0924-0136(00)00638-5
Google Scholar
[4]
Z. Zeng, S. Kuroda, H. Era, Comparison of oxidation behavior of Ni–20Cr alloy and Ni-base self-fluxing alloy during air plasma spraying, Surf. Coatings Technol. 204 (2009) 69-77.
DOI: 10.1016/j.surfcoat.2009.06.036
Google Scholar
[5]
P.R. Reinaldo, A.S.C.M. D'Oliveira, NiCrSiB coatings deposited by plasma transferred arc on different steel substrates, J. Mater. Eng. Perform. 22 (2013) 590-597.
DOI: 10.1007/s11665-012-0271-7
Google Scholar
[6]
L. Peng, Improvement in microstructure performance of the NiCrBSi reinforced coating on TA15 titanium alloy, Surf. Rev. Lett. 19 (2012) 1250047.
DOI: 10.1142/s0218625x12500473
Google Scholar
[7]
A. V. Makarov, N.N. Soboleva, I.Y. Malygina, Role of the strengthening phases in abrasive wear resistance of laser-clad NiCrBSi coatings, J. Frict. Wear. 38 (2017) 272-278.
DOI: 10.3103/s1068366617040080
Google Scholar
[8]
A.G. Grigoryants, A.Y. Stavertiy, K.O. Bazaleeva, T.Y. Yudina, N.A. Smirnova, R.S. Tretyakov, A.I. Misyurov, Laser surfacing of nickel-based composite war-resisting coatings reinforced with tungsten carbide, Weld. Int. 31 (2017) 52-57.
DOI: 10.1080/09507116.2016.1213039
Google Scholar
[9]
A.G. Grigoryants, A.Y. Stavertiy, K.O. Bazaleeva, T.Y. Yudina, N.A. Smirnova, R.S. Tretyakov, A.I. Misyurov, Laser surfacing of nickel-based composite war-resisting coatings reinforced with tungsten carbide, Weld. Int. 31 (2017) 52-57.
DOI: 10.1080/09507116.2016.1213039
Google Scholar
[10]
K. Van Acker, D. Vanhoyweghen, R. Persoons, J. Vangrunderbeek, Influence of tungsten carbide particle size and distribution on the wear resistance of laser clad WC/Ni coatings, Wear. 258 (2005) 194-202.
DOI: 10.1016/j.wear.2004.09.041
Google Scholar
[11]
S. Zhou, J. Lei, X. Dai, J. Guo, Z. Gu, H. Pan, A comparative study of the structure and wear resistance of NiCrBSi/50 wt.% WC composite coatings by laser cladding and laser induction hybrid cladding, Int. J. Refract. Met. Hard Mater. 60 (2016) 17-27.
DOI: 10.1016/j.ijrmhm.2016.06.019
Google Scholar
[12]
S. Zhou, X. Dai, Laser induction hybrid rapid cladding of WC particles reinforced NiCrBSi composite coatings, Appl. Surf. Sci. 256 (2010) 4708-4714.
DOI: 10.1016/j.apsusc.2010.02.078
Google Scholar
[13]
B. Basu, G.B. Raju, A.K. Suri, Processing and properties of monolithic TiB 2 based materials, Int. Mater. Rev. 51 (2006) 352-374.
DOI: 10.1179/174328006x102529
Google Scholar
[14]
O.G. Lenivtseva, N.S. Belousova, E.A. Lozhkina, T.A. Zimoglyadova, V.V. Samoylenko, L.V. Chuchkova, Structure and properties of Ti-C-B coatings produced by non-vacuum electron beam cladding, in: IOP Conf. Ser. Mater. Sci. Eng. 156 (2016) 012021.
DOI: 10.1088/1757-899x/156/1/012021
Google Scholar
[15]
A.P. Umanskii, A.E. Terentiev, M.S. Storozhenko, I.S. Martsenyuk, Structurization of composites from self-fluxing alloys with titanium diboride additions, Powder Metall. Met. Ceram. 53 (2014) 359-367.
DOI: 10.1007/s11106-014-9624-0
Google Scholar
[16]
A.P. Umanskii, M.S. Storozhenko, I. V. Hussainova, A.E. Terentiev, A.M. Kovalchenko, M.M. Antonov, Structure, phase composition, and wear mechanisms of plasma-sprayed NiCrSiB–20 wt.% TiB2 coating, Powder Metall. Met. Ceram. 53 (2015) 663-671.
DOI: 10.1007/s11106-015-9661-3
Google Scholar
[17]
K. Simunovic, T. Saric, G. Simunovic, Different approaches to the investigation and testing of the Ni-Based self-fluxing alloy coatings—A review. Part 1: General facts, Wear and Corrosion Investigations, Tribol. Trans. 57 (2014) 955-979.
DOI: 10.1080/10402004.2014.927547
Google Scholar
[18]
A. Ryabchikov, H. Lille, R. Reitsnik, S. Toropov, A. Surženkov, P. Kulu, Investigation of residual stresses in flame sprayed Ni-based wear resistant coatings by the Hole-drilling and X-ray methods, Mater. Sci. Forum. 768-769 (2013) 144–149.
DOI: 10.4028/www.scientific.net/msf.768-769.144
Google Scholar
[19]
M.A. Rodríguez, L. Gil, M.H. Staia, Post-heat treatment microstructural changes in nickel based HVOF coating, Surf. Eng. 18 (2002) 358-362.
DOI: 10.1179/026708402225006213
Google Scholar
[20]
M.G. Golkovski, I.A. Bataev, A.A. Bataev, A.A. Ruktuev, T.V. Zhuravina, N.K. Kuksanov, R.A. Salimov, V.A. Bataev, Atmospheric electron-beam surface alloying of titanium with tantalum, Mater. Sci. Eng. A. 578 (2013) 310-317.
DOI: 10.1016/j.msea.2013.04.103
Google Scholar
[21]
T. Zimogliadova, E. Bushueva, A. Shtertser, B. Grinberg, N. Soboleva, E. Kollmannsberger, I. Chakin, D. Bibko, A. Leonov, D. Safarova, Structure features and wear resistance of layers, formed by Ni-based Self-fluxing alloy combined with Boron by electron beam, revealed in the air atmosphere, Met. Work. Mater. Sci. 22 (2020) 89-103.
DOI: 10.17212/1994-6309-2020-22.2-89-103
Google Scholar