Structural Features of Ni-Based Self-Fluxing Alloy Protective Layers, Produced by Non-Vacuum Electron Beam Cladding, Reinforced with Titanium-Based Particles

Article Preview

Abstract:

The aim of this research was to establish influence of Ti-enriched powder mixtures on structure and microhardness level of protective layers based on Ni-Cr-Si-B-alloy, produced with non-vacuum electron beam cladding technology. The fabricated protective layers possessed the complex structure, consisting of matrix phase (γ-(Ni, Fe)) combined with hard phases such as Fe2B, CrB and TiC. Addition of titanium with boron in amount of 15 wt. % leads to significant increasing of microhardness level. In this case, level of microhardness increases up to 700 HV.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1052)

Pages:

194-199

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Hemmati, J.C. Rao, V. Ocelík, J.T.M. De Hosson, Electron microscopy characterization of Ni-Cr-B-Si-C laser deposited coatings, Microsc. Microanal. 19 (2013) 120-131.

DOI: 10.1017/s1431927612013839

Google Scholar

[2] I. Hemmati, V. Ocelik, K. Csach, J.T.M. De Hosson, Microstructure and phase formation in a rapidly solidified laser-deposited Ni-Cr-B-Si-C hardfacing alloy, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 45 (2014) 878-892.

DOI: 10.1007/s11661-013-2004-4

Google Scholar

[3] T. Hejwowski, S. Szewczyk, A. Weroński, An investigation of the abrasive and erosive wear of flame-sprayed coatings, J. Mater. Process. Technol. 106 (2000) 54-57.

DOI: 10.1016/s0924-0136(00)00638-5

Google Scholar

[4] Z. Zeng, S. Kuroda, H. Era, Comparison of oxidation behavior of Ni–20Cr alloy and Ni-base self-fluxing alloy during air plasma spraying, Surf. Coatings Technol. 204 (2009) 69-77.

DOI: 10.1016/j.surfcoat.2009.06.036

Google Scholar

[5] P.R. Reinaldo, A.S.C.M. D'Oliveira, NiCrSiB coatings deposited by plasma transferred arc on different steel substrates, J. Mater. Eng. Perform. 22 (2013) 590-597.

DOI: 10.1007/s11665-012-0271-7

Google Scholar

[6] L. Peng, Improvement in microstructure performance of the NiCrBSi reinforced coating on TA15 titanium alloy, Surf. Rev. Lett. 19 (2012) 1250047.

DOI: 10.1142/s0218625x12500473

Google Scholar

[7] A. V. Makarov, N.N. Soboleva, I.Y. Malygina, Role of the strengthening phases in abrasive wear resistance of laser-clad NiCrBSi coatings, J. Frict. Wear. 38 (2017) 272-278.

DOI: 10.3103/s1068366617040080

Google Scholar

[8] A.G. Grigoryants, A.Y. Stavertiy, K.O. Bazaleeva, T.Y. Yudina, N.A. Smirnova, R.S. Tretyakov, A.I. Misyurov, Laser surfacing of nickel-based composite war-resisting coatings reinforced with tungsten carbide, Weld. Int. 31 (2017) 52-57.

DOI: 10.1080/09507116.2016.1213039

Google Scholar

[9] A.G. Grigoryants, A.Y. Stavertiy, K.O. Bazaleeva, T.Y. Yudina, N.A. Smirnova, R.S. Tretyakov, A.I. Misyurov, Laser surfacing of nickel-based composite war-resisting coatings reinforced with tungsten carbide, Weld. Int. 31 (2017) 52-57.

DOI: 10.1080/09507116.2016.1213039

Google Scholar

[10] K. Van Acker, D. Vanhoyweghen, R. Persoons, J. Vangrunderbeek, Influence of tungsten carbide particle size and distribution on the wear resistance of laser clad WC/Ni coatings, Wear. 258 (2005) 194-202.

DOI: 10.1016/j.wear.2004.09.041

Google Scholar

[11] S. Zhou, J. Lei, X. Dai, J. Guo, Z. Gu, H. Pan, A comparative study of the structure and wear resistance of NiCrBSi/50 wt.% WC composite coatings by laser cladding and laser induction hybrid cladding, Int. J. Refract. Met. Hard Mater. 60 (2016) 17-27.

DOI: 10.1016/j.ijrmhm.2016.06.019

Google Scholar

[12] S. Zhou, X. Dai, Laser induction hybrid rapid cladding of WC particles reinforced NiCrBSi composite coatings, Appl. Surf. Sci. 256 (2010) 4708-4714.

DOI: 10.1016/j.apsusc.2010.02.078

Google Scholar

[13] B. Basu, G.B. Raju, A.K. Suri, Processing and properties of monolithic TiB 2 based materials, Int. Mater. Rev. 51 (2006) 352-374.

DOI: 10.1179/174328006x102529

Google Scholar

[14] O.G. Lenivtseva, N.S. Belousova, E.A. Lozhkina, T.A. Zimoglyadova, V.V. Samoylenko, L.V. Chuchkova, Structure and properties of Ti-C-B coatings produced by non-vacuum electron beam cladding, in: IOP Conf. Ser. Mater. Sci. Eng. 156 (2016) 012021.

DOI: 10.1088/1757-899x/156/1/012021

Google Scholar

[15] A.P. Umanskii, A.E. Terentiev, M.S. Storozhenko, I.S. Martsenyuk, Structurization of composites from self-fluxing alloys with titanium diboride additions, Powder Metall. Met. Ceram. 53 (2014) 359-367.

DOI: 10.1007/s11106-014-9624-0

Google Scholar

[16] A.P. Umanskii, M.S. Storozhenko, I. V. Hussainova, A.E. Terentiev, A.M. Kovalchenko, M.M. Antonov, Structure, phase composition, and wear mechanisms of plasma-sprayed NiCrSiB–20 wt.% TiB2 coating, Powder Metall. Met. Ceram. 53 (2015) 663-671.

DOI: 10.1007/s11106-015-9661-3

Google Scholar

[17] K. Simunovic, T. Saric, G. Simunovic, Different approaches to the investigation and testing of the Ni-Based self-fluxing alloy coatings—A review. Part 1: General facts, Wear and Corrosion Investigations, Tribol. Trans. 57 (2014) 955-979.

DOI: 10.1080/10402004.2014.927547

Google Scholar

[18] A. Ryabchikov, H. Lille, R. Reitsnik, S. Toropov, A. Surženkov, P. Kulu, Investigation of residual stresses in flame sprayed Ni-based wear resistant coatings by the Hole-drilling and X-ray methods, Mater. Sci. Forum. 768-769 (2013) 144–149.

DOI: 10.4028/www.scientific.net/msf.768-769.144

Google Scholar

[19] M.A. Rodríguez, L. Gil, M.H. Staia, Post-heat treatment microstructural changes in nickel based HVOF coating, Surf. Eng. 18 (2002) 358-362.

DOI: 10.1179/026708402225006213

Google Scholar

[20] M.G. Golkovski, I.A. Bataev, A.A. Bataev, A.A. Ruktuev, T.V. Zhuravina, N.K. Kuksanov, R.A. Salimov, V.A. Bataev, Atmospheric electron-beam surface alloying of titanium with tantalum, Mater. Sci. Eng. A. 578 (2013) 310-317.

DOI: 10.1016/j.msea.2013.04.103

Google Scholar

[21] T. Zimogliadova, E. Bushueva, A. Shtertser, B. Grinberg, N. Soboleva, E. Kollmannsberger, I. Chakin, D. Bibko, A. Leonov, D. Safarova, Structure features and wear resistance of layers, formed by Ni-based Self-fluxing alloy combined with Boron by electron beam, revealed in the air atmosphere, Met. Work. Mater. Sci. 22 (2020) 89-103.

DOI: 10.17212/1994-6309-2020-22.2-89-103

Google Scholar