[1]
I. Hemmati, J.C. Rao, V. Ocelík, J.T.M. De Hosson, Electron microscopy characterization of Ni-Cr-B-Si-C laser deposited coatings, Microsc. Microanal. 19 (2013) 120-131.
DOI: 10.1017/s1431927612013839
Google Scholar
[2]
T. Hejwowski, S. Szewczyk, A. Weroński, An investigation of the abrasive and erosive wear of flame-sprayed coatings, J. Mater. Process. Technol. 106 (2000) 54-57.
DOI: 10.1016/s0924-0136(00)00638-5
Google Scholar
[3]
A. V. Makarov, N.N. Soboleva, I.Y. Malygina, Role of the strengthening phases in abrasive wear resistance of laser-clad NiCrBSi coatings, J. Frict. Wear. 38 (2017) 272-278.
DOI: 10.3103/s1068366617040080
Google Scholar
[4]
A.G. Grigoryants, A.Y. Stavertiy, K.O. Bazaleeva, T.Y. Yudina, N.A. Smirnova, R.S. Tretyakov, A.I. Misyurov, Laser surfacing of nickel-based composite war-resisting coatings reinforced with tungsten carbide, Weld. Int. 31 (2017) 52-57.
DOI: 10.1080/09507116.2016.1213039
Google Scholar
[5]
K. Simunovic, T. Saric, G. Simunovic, Different Approaches to the investigation and testing of the Ni-Based self-fluxing alloy coatings—A review. Part 1: General facts, wear and corrosion investigations, Tribol. Trans. 57 (2014) 955-979.
DOI: 10.1080/10402004.2014.927547
Google Scholar
[6]
A.G. Grigoryants, A.Y. Stavertiy, K.O. Bazaleeva, T.Y. Yudina, N.A. Smirnova, R.S. Tretyakov, A.I. Misyurov, Laser surfacing of nickel-based composite war-resisting coatings reinforced with tungsten carbide, Weld. Int. 31 (2017) 52-57.
DOI: 10.1080/09507116.2016.1213039
Google Scholar
[7]
A. Ryabchikov, H. Lille, R. Reitsnik, S. Toropov, A. Surženkov, P. Kulu, Investigation of residual stresses in flame sprayed Ni-based wear resistant coatings by the Hole-drilling and X-ray methods, Mater. Sci. Forum. 768-769 (2013) 144–149.
DOI: 10.4028/www.scientific.net/msf.768-769.144
Google Scholar
[8]
M. Erfanmanesh, H. Abdollah-Pour, H. Mohammadian-Semnani, R. Shoja-Razavi, Kinetics and oxidation behavior of laser clad WC-Co and Ni/WC-Co coatings, Ceram. Int. 44 (2018) 12805-12814.
DOI: 10.1016/j.ceramint.2018.04.087
Google Scholar
[9]
A.P. Umanskii, M.S. Storozhenko, I. V. Hussainova, A.E. Terentiev, A.M. Kovalchenko, M.M. Antonov, Structure, Phase Composition, and Wear Mechanisms of Plasma-Sprayed NiCrSiB–20 wt.% TiB2 Coating, Powder Metall. Met. Ceram. 53 (2015) 663-671.
DOI: 10.1007/s11106-015-9661-3
Google Scholar
[10]
F. Fernandes, A. Cavaleiro, A. Loureiro, Oxidation behavior of Ni-based coatings deposited by PTA on gray cast iron, Surf. Coatings Technol. 207 (2012) 196-203.
DOI: 10.1016/j.surfcoat.2012.06.070
Google Scholar
[11]
D.V. Lazurenko, G.I. Alferova, M.G. Golkovsky, K.I. Emurlaev, Y.Y. Emurlaeva, I.A. Bataev, T.S. Ogneva, A.A. Ruktuev, N. V. Stepanova, A.A. Bataev, Formation of wear-resistant copper-bearing layers on the surfaces of steel substrates by non-vacuum electron beam acladding using powder mixtures, Surf. Coatings Technol. 395 (2020) 125927.
DOI: 10.1016/j.surfcoat.2020.125927
Google Scholar
[12]
D.V. Lazurenko, I.S. Laptev, M.G. Golkovsky, A. Stark, J. Paul, I. Bataev, A.A. Ruktuev, L. Song, C. Gollwitzer, F. Pyczak, Influence of the Ti/Al/Nb ratio on the structure and properties on intermetallic layers obtained on titanium by non-vacuum electron beam cladding, Mater. Charact. 163 (2020) 110246.
DOI: 10.1016/j.matchar.2020.110246
Google Scholar