[1]
A.A. Ilyin, B.A. Kolachev, I.S. Polkin, Titanium Alloys. Composition, Structure, Properties, Reference book, VILS-MATI, Moscow, (2009).
Google Scholar
[2]
S.V. Gladkovskii, V.P. Volkov, D.R. Salikhyanov, V.E. Veselova, A.M. Patselov, Rheological behavior of a VT23 alloy during deformation in a wide temperature range, Russian Metallurgy (Metally). 10 (2020) 1147-1150.
DOI: 10.1134/s0036029520100079
Google Scholar
[3]
A.I. Khorev, Complex alloying of titanium alloys, Metal Science and Heat Treatment. 17 (1975) 701-705.
DOI: 10.1007/bf00664322
Google Scholar
[4]
V.I. Muravyev, V.V. Grigorev, P.V. Bakhmatov, Production process impact on permanent electron-beam weld connection characteristics for assembly of large titanium aircraft primary structural components, Lecture Notes in Networks and Systems. 200 (2021) 548-557.
DOI: 10.1007/978-3-030-69421-0_58
Google Scholar
[5]
A.G. Illarionov, O.A. Koemets, S.M. Illarionova, A.A. Popov, vacuum annealing of welded joints of titanium alloys OT4 – VT6, VT20 – VT6 and VT23 – VT6, Metal Science and Heat Treatment. 62(7-8) (2020) 430-435.
DOI: 10.1007/s11041-020-00580-7
Google Scholar
[6]
D.V. Lazurenko, I.A. Bataev, V.I. Mali, E.A. Lozhkina, M.A. Esikov, V.A. Bataev, Structural transformations occurring upon explosive welding of alloy steel and high-strength titanium, Physics of Metals and Metallography. 119(5) (2018) 469-476.
DOI: 10.1134/s0031918x18050095
Google Scholar
[7]
M. Chausov, J. Brezinová, A. Pylypenko, P. Maruschak, L. Titova, A. Guzanová, Modification of mechanical properties of high-strength titanium alloys VT23 and VT23M due to impact-oscillatory loading, Metals. 9(1) (2019) 80.
DOI: 10.3390/met9010080
Google Scholar
[8]
Y.B. Egorova, L.V. Davydenko, E.N. Egorov, E.V. Chibisova, I.Y. Starchikova, Study of stability of chemical composition and characteristics of machinability of titanium alloys of Ti-Al-V and Ti-Al-Mo-V-Cr-Fe systems, International Review of Mechanical Engineering. 14(2) (2020) 111-118.
DOI: 10.15866/ireme.v14i2.18246
Google Scholar
[9]
F.V. Vodolazskiy, A.G. Illarionov, N.A. Shirinkina, Microstructure, phase composition, physical and mechanical properties of titanium alloy VT23 hot-extruded tube, Defect and Diffusion Forum. 410 (2021) 324-329.
DOI: 10.4028/www.scientific.net/ddf.410.324
Google Scholar
[10]
V.N. Moiseev, Titanium Alloys Russian Aircraft and Aerospace Applications, CRC Press Taylor & Francis Group, (2006).
Google Scholar
[11]
S.G. Glazunov, B.A. Kolachev, Titanium Alloys. Metallography of Titanium Alloys, Metallurgy, Moscow, (1980).
Google Scholar
[12]
A.G. Illarionov, F.V. Vodolazskiy, N.A. Barannikova, Y.A. Kosmatskiy, Y.V. Khudorozhkova, Influence of phase composition on thermal expansion of Ti-0.4Al, Ti-2.2Al-2.5Zr and Ti-3Al-2.5V alloys, Journal of Alloys and Compounds. 857 (2021) 158049.
DOI: 10.1016/j.jallcom.2020.158049
Google Scholar
[13]
ASTM E228-17, Standard Test Method for Linear Thermal Expansion of Solid Materials with a Push-Rod Dilatometer, ASTM International, West Conshohocken, PA, (2017).
DOI: 10.1520/e0228-11r16
Google Scholar
[14]
X. Fan, Q. Li, A. Zhao, Y. Shi and W. Mei, The Effect of initial structure on phase transformation in continuous heating of a TA15 titanium alloy, Metals. 7(200) (2017) 1-12.
DOI: 10.3390/met7060200
Google Scholar
[15]
V.N. Gridnev, O.M. Ivasishin, S.P. Oshkaderov, Physical foundations of high-speed thermal hardening of titanium alloys, Naukova Dumka, Kiev, (1986).
Google Scholar
[16]
V.D. Sadovskii, L.V. Smirnov, I.P. Sorokin, et al., Study of phase recrystallization in titanium, Fiz. Met. Metalloved. 10 (3) (1960) 397-403.
Google Scholar
[17]
U. Zwicker, Titan and its Alloys, Mir, Moscow, (1979).
Google Scholar
[18]
A.A. Il'in, M.Yu. Kollerov, V.V. Zasypkin, V.M. Maistrov, Volume changes occurring in (α+β)-titanium alloys during polymorphic transformation, Metal Science and Heat Treatment. 28(1) (1986) 68-72.
DOI: 10.1007/bf00735553
Google Scholar
[19]
F.Xu.G. Chen, X. Zhang, K. Zhou, Isothermal kinetics of β ↔ α transformation in Ti-55531 alloy influenced by phase composition and microstructure, Materials and Design. 130 (2017) 302-316.
DOI: 10.1016/j.matdes.2017.05.078
Google Scholar
[20]
V.S. Lyasotskaya, I.V. Lyasotskii, V.N. Meshcheryakov, N.Yu. Ravdonikas, S.I. Nadtochii, N.N. Faustov, Phase transformations during continuous cooling in VT6ch and VT23 alloys, Izvestiya Vysshikh Uchebnykh Zavedenij, Tsvetnaya Metallurgiya. 2 (1986) 88-93.
Google Scholar
[21]
V.T. Cherepin, The Experimental Technique in Physical Metallurgy, Kiev, Tehnika, (1968).
Google Scholar
[22]
J.W. Elmer, T.A. Palmer, S.S. Babu, E.D. Specht, In situ observations of lattice expansion and transformation rates of α and β phases in Ti-6Al-4V, Materials Science and Engineering A. 391 (2005) 104-113.
DOI: 10.1016/j.msea.2004.08.084
Google Scholar
[23]
P. Tarin, A.L. Fernandez, A.G. Simon, J.M. Badia, N.M. Piris, Transformations in the Ti–5Al–2Sn–2Zr–4Mo–4Cr (Ti-17) alloy and mechanical and microstructural characteristics, Materials Science and Engineering A. 438 (2006) 364-368.
DOI: 10.1016/j.msea.2006.02.183
Google Scholar
[24]
S. Tamirisakandala, R.B. Bhat, D.B. Miracle, S. Boddapati, R. Bordia, R. Vanover, V.K. Vasudevan, Effect of boron on the beta transus of Ti–6Al–4V alloy, Scripta Materialia. 53 (2005) 217-222.
DOI: 10.1016/j.scriptamat.2005.03.038
Google Scholar
[25]
W. Dang, J. Li, T. Zhang, and H. Kou, Microstructure and phase transformation in Ti-22Al-(27-x)Nb-xZr alloys during continuous heating, Journal of Materials Engineering and Performance. 24(10) (2015) 3951-3957.
DOI: 10.1007/s11665-015-1659-y
Google Scholar
[26]
R. Dabrowski, Investigations of a+b-b phase transformation in monotonically heated Ti6Al7Nb alloy, Archives of Metallurgy and Materials. 57(4) (2012) 995-1000.
DOI: 10.2478/v10172-012-0111-7
Google Scholar
[27]
M.-P. Wan, Y.-Q. Zhao, W.-D. Zeng, Phase transformation kinetics of Ti-1300 alloy during continuous heating, Rare Met. 34(4) (2015) 233-238.
DOI: 10.1007/s12598-015-0472-y
Google Scholar