Improved Natural Mordenite as Low-Cost Catalyst for Glycerol Acetalization into Solketal – An Effective Fuel Additive

Article Preview

Abstract:

The increase in biodiesel production results in an excessive amount of crude glycerol by-product. Therefore, production of solketal –an effective additive of gasoline fuel-from glycerol and acetone via catalytic acetalization could improve the added value of glycerol. This study investigates enhancement of natural mordenite catalytic properties through the hydrothermal recrystallization method for glycerol acetalization. The hydrothermal temperature was varied at 150, 170 and 190 oC to form ZT 150, ZT 170 and ZT 190, respectively. The samples were characterized using the x-ray diffraction and the scanning electron microscope-Energy dispersive X-Ray. They were later used as catalysts for glycerol acetalization with acetone. The best obtained catalyst was further studied to explore the effect of acetone on glycerol ration. The glycerol conversion was deter-mined using the ASTM D7637-10 titration method. Solketal product was identified by using the Fourier transform infrared spectroscopy. The results show that the recrystallization temperature affects the intensity of the mordenite phase and quartz impurity phase in the modified zeolites. A high recrystallization temperature led to a higher phase of mordenite, peaking at 170oC, beyond which the quartz impurity phase increased. Glycerol acetalization conversions over zeolite parent, ZT 150, ZT 170 and ZT190 with acetone to glycerol ratio of 3 were 16.1%, 30.4%, 33.9% and 32.5%, respectively. When the ratio of acetone to glycerol was increased to 12, the glycerol conversion over ZT 170 catalyst reached 59%, a good starting point for further modifications. Overall finding demonstrated a straight-forward fabrication of catalyst from natural resource to enhance glycerol as the biodiesel production by-product into a higher value end-product of solketal.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1057)

Pages:

71-87

Citation:

Online since:

March 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.S. Silitonga, H.H. Masjuki, H.C. Ong, A.H. Sebayang, S. Dharma, F. Kusumo, J. Siswantoro, J. Milano, K. Daud, T.M.I. Mahlia. Evaluation of the engine performance and exhaust emissions of biodiesel-bioethanol-diesel blends using kernel-based extreme learning machine, Energy, 159 (2018), 1075–1087.

DOI: 10.1016/j.energy.2018.06.202

Google Scholar

[2] F. Ideris, A.H. Shamsuddin, S. Nomanbhay, F. Kusumo, A.S. Silitonga, M.Y. Ong, H.C. Ong, T.M.I. Mahlia, Optimization of ultrasound-assisted oil extraction from Canarium odontophyllum kernel as a novel biodiesel feedstock, Journal of Cleaner Production, 288 (2021), 125563.

DOI: 10.1016/j.jclepro.2020.125563

Google Scholar

[3] H.C. Ong, H.H. Masjuki, T.M.I. Mahlia, A.S. Silitonga, W.T. Chong, K.Y. Leong, Optimization of biodiesel production and engine performance from high free fatty acid Calophyllum inophyllum oil in CI diesel engine, Energy Conversion Management, 81 (2014), 30–40.

DOI: 10.1016/j.enconman.2014.01.065

Google Scholar

[4] A.S. Silitonga, A.H. Shamsuddin, T.M.I. Mahlia, J. Milano, F. Kusumo, J. Siswantoro, S. Dharma, A.H. Sebayang, H.H. Masjuki, H.C. Ong, Biodiesel synthesis from Ceiba pentandra oil by microwave irradiation-assisted transesterification: ELM modeling and optimization, Renewable Energy, 146 (2020), 1278–1291.

DOI: 10.1016/j.renene.2019.07.065

Google Scholar

[5] H.C. Ong, J. Milano, A.S. Silitonga, M.H. Hassan, A.H. Shamsuddin, C.T. Wang, T.M.I. Mahlia, J. Siswantoro, F. Kusumo, J. Sutrisno, Biodiesel production from Calophyllum inophyllum-Ceiba pentandra oil mixture: Optimization and characterization. Journal of Cleaner Production 219 (2019), 183–198.

DOI: 10.1016/j.jclepro.2019.02.048

Google Scholar

[6] H.C. Ong, Y.W. Tiong, B.H.H. Goh, Y.Y. Gan, M. Mofijur, I.M.R. Fattah, C.T. Chong, M.A. Alam, H.V. Lee, A.S. Silitonga. Recent advances in biodiesel production from agricultural products and microalgae using ionic liquids: Opportunities and challenges. Energy Conversion Management 228 (2021), 113647.

DOI: 10.1016/j.enconman.2020.113647

Google Scholar

[7] L.P. Ozorio, R. Pianzolli, M.B.S. Mota, C.J.A. Mota, Reactivity of glycerol/acetone ketal (solketal) and glycerol/formaldehyde acetals toward acid-catalyzed hydrolysis. Journal of the Brazilian Chemical Society, 23 (2012).

DOI: 10.1590/s0103-50532012000500019

Google Scholar

[8] J.A. Melero, G. Vicente, G. Morales, M. Paniagua, J. Bustamante, Oxygenated compounds derived from glycerol for biodiesel formulation: Influence on EN 14214 quality parameters, Fuel 89 (2010), 2011–(2018).

DOI: 10.1016/j.fuel.2010.03.042

Google Scholar

[9] A.L. Maksimov, A.I. Nekhaev, D.N. Ramazanov, Y.A. Arinicheva, A.A. Dzyubenko, S.N. Khadzhiev, Preparation of high-octane oxygenate fuel components from plant-derived polyols, Petroleum Chemistry, 51 (2011), 61–69.

DOI: 10.1134/s0965544111010117

Google Scholar

[10] I. Corrêa, R.P.V. Faria, A.E. Rodrigues, Continuous Valorization of Glycerol into Solketal: Recent Advances on Catalysts, Processes, and Industrial Perspectives. Sustainable Chemistry, 2 (2021).

DOI: 10.3390/suschem2020017

Google Scholar

[11] I. Fatimah, I. Sahroni, G. Fadillah, M.M. Musawwa, T.M.I Mahlia, O.Muraza, Glycerol to Solketal for Fuel Additive: Recent Progress in Heterogeneous Catalysts, Energies, 12 (2019).

DOI: 10.3390/en12152872

Google Scholar

[12] G.S. Dmitriev, A.V. Terekhov, L.N. Zanaveskin, A.L. Maksimov, S.N. Khadzhiev, Kinetics of the Formation of Solketal in the Presence of Sulfuric Acid, Kinetic and Catalysis, 59 (2018), 504–508.

DOI: 10.1134/s002315841804002x

Google Scholar

[13] F. Taddeo, R. Esposito, V. Russo, M. Di Serio, Kinetic Modeling of Solketal Synthesis from Glycerol and Acetone Catalyzed by an Iron(III) Complex. Catalysts, 11 (2021).

DOI: 10.3390/catal11010083

Google Scholar

[14] R. Zhou, Y. Jiang, H. Zhao, B. Ye, L. Wang, Z. Hou, Synthesis of solketal from glycerol over modified SiO2 supported p-phenolsulfonic acid catalyst, Fuel, 291 (2021), 120207.

DOI: 10.1016/j.fuel.2021.120207

Google Scholar

[15] J. Kowalska-Kus, A. Held, M. Frankowski, K. Nowinska, Solketal formation from glycerol and acetone over hierarchical zeolites of different structure as catalysts, Journal of Molecular Catalysis A: Chemical, 426 (2017), 205–212.

DOI: 10.1016/j.molcata.2016.11.018

Google Scholar

[16] S. Saepurahman, R. Hashaikeh, T. Kurniawan, A top-down approach to preparation of H-Y zeolite nanoparticles. Asia-Pacific Journal of Science and Technology, 26 (2021).

Google Scholar

[17] T. Kurniawan, O. Muraza, I.A. Bakare, M.A. Sanhoob, A.M. Al-Amer, Isomerization of n-Butane over Cost-Effective Mordenite Catalysts Fabricated via Recrystallization of Natural Zeolites. Industrial & Engineering Chemistry Research, 57 (2018).

DOI: 10.1021/acs.iecr.7b04040

Google Scholar

[18] P. Manjunathan, S.P. Maradur, A.B. Halgeri, G.V. Shanbhag, Room temperature synthesis of solketal from acetalization of glycerol with acetone: Effect of crystallite size and the role of acidity of beta zeolite. Journal of Molecular Catalysis A: Chemical, 2015, 396, 47–54.

DOI: 10.1016/j.molcata.2014.09.028

Google Scholar

[19] S.S. Priya, P.R. Selvakannan, K.V.R. Chary, M.L. Kantam, S.K. Bhargava, Solvent-free microwave-assisted synthesis of solketal from glycerol using transition metal ions promoted mordenite solid acid catalysts. Molecular Catalysis, 434 (2017), 184–193.

DOI: 10.1016/j.mcat.2017.03.001

Google Scholar

[20] C. Ferreira, A. Araujo, V. Calvino-Casilda, M.G. Cutrufello, E. Rombi, A.M. Fonseca, M.A. Bañares, I.C. Neves, Y zeolite-supported niobium pentoxide catalysts for the glycerol acetalization reaction, Microporous Mesoporous Materials, 271 (2018), 243–251.

DOI: 10.1016/j.micromeso.2018.06.010

Google Scholar

[21] B.K. Raja, N. Mohindra, U. Goswami, B. Modhera, Conversion of Glycerol to Solketal using Heterogeneous Catalysts. Journal of The Institution of Engineers, (2021).

DOI: 10.1007/s40034-020-00200-2

Google Scholar

[22] A.S.M. Junaid, C. Street, W. Wang, M.M. Rahman, W. An, W.C. McCaffrey, S.M. Kuznicki, Integrated extraction and low severity upgrading of oilsands bitumen by activated natural zeolite catalysts, Fuel, 94 (2012), 457–464.

DOI: 10.1016/j.fuel.2011.10.043

Google Scholar

[23] Sariman, S. Synthesis of Na-A Zeolite from Natural Zeolites. Indonesian Mining Journal, 08 (2005), 37–51.

Google Scholar

[24] H.I. Mahdi, E. Irawan, N. Nuryoto, J. Jayanudin, H. Sulistyo, W.B. Sediawan, O. Muraza, Glycerol Carbonate Production from Biodiesel Waste Over Modified Natural Clinoptilolite. Waste and Biomass Valorization (2016).

DOI: 10.1007/s12649-016-9495-3

Google Scholar

[25] X. Chen, Z. An, Y. Wang, Q. Ma, X. Feng, Y. Liu, C. Yang, Green BTX production from methyl oleate over hierarchical HZSM-5 zeolites prepared by NaOH treatment, Fuel, 290 (2021), 119798.

DOI: 10.1016/j.fuel.2020.119798

Google Scholar

[26] T. Kurniawan, Nuryoto, Rahmayetty, Characterization and Application of Bayah Natural Zeolites for Ammonium Capture: Isotherm and Kinetic, Material Science Forum, 988 (2020), 51–64.

DOI: 10.4028/www.scientific.net/msf.988.51

Google Scholar

[27] X. Wang, R. Li, C. Yu, Y. Liu, L. Zhang, C. Xu, H. Zhou, Enhancing the dimethyl ether carbonylation performance over mordenite catalysts by simple alkaline treatment, Fuel 239 (2019), 794–803.

DOI: 10.1016/j.fuel.2018.10.147

Google Scholar

[28] R.B. Lima, M.M.S. Neto, D.S. Oliveira, A.G.D. Santos, L.D. Souza, V.P.S. Caldeira, Obtainment of hierarchical ZSM-5 zeolites by alkaline treatment for the polyethylene catalytic cracking. Advanced Powder Technology, 32 (2021), 515–523.

DOI: 10.1016/j.apt.2020.12.030

Google Scholar

[29] Y. Shi, Q. Zhou, Z. Qin, Z. Wu, W. Jiao, M. Dong, W. Fan, J. Wang, Hierarchically structured Pt/K-Beta zeolites for the catalytic conversion of n-heptane to aromatics. Microporous Mesoporous Materials, 324 (2021), 111308.

DOI: 10.1016/j.micromeso.2021.111308

Google Scholar

[30] H. Zhang, Z. Hu, L.H. Huang, K. Zhang, L. Song, Z. Wang, J. Shi, Y. Ma, Zhuang, W. Shen. Dehydration of Glycerol to Acrolein over Hierarchical ZSM-5 Zeolites: Effects of Mesoporosity and Acidity. ACS Catalysis, 5, (2015) 2548–2558.

DOI: 10.1021/cs5019953

Google Scholar

[31] A. Talebian-Kiakalaieh, S. Tarighi, Hierarchical faujasite zeolite-supported heteropoly acid catalyst for acetalization of crude-glycerol to fuel additives, Journal of Industrial Engineering Chemistry, 79 (2019), 452–464.

DOI: 10.1016/j.jiec.2019.07.021

Google Scholar

[32] I. Marantos, George E. Christidis, Mihaela Ulman Zeolite Formation and Deposits. In Natural Zeolites Handbook, (2011).

DOI: 10.2174/978160805261511201010028

Google Scholar

[33] IZA No Title Available online: http://www.iza-online.org/natural/Datasheets/Mordenite/ mordenite.htm.

Google Scholar

[34] T. Kurniawan, S. Bahri, A. Diyanah, N.D. Milenia, N. Nuryoto, K. Faungnawakij, S. Thongratkaew, M. Roil Bilad, N. Huda, Improving Ammonium Sorption of Bayah Natural Zeolites by Hydrothermal Method. Processes, 8 (2020).

DOI: 10.3390/pr8121569

Google Scholar

[35] C.S. Triantafillidis, N.P. Evmiridis, L. Nalbandian, I.A. Vasalos, Performance of ZSM-5 as a Fluid Catalytic Cracking Catalyst Additive:  Effect of the Total Number of Acid Sites and Particle Size, Industrial Engineering Chemistry Research, 38 (1999), 916–927.

DOI: 10.1021/ie980395j

Google Scholar

[36] O. Muraza, Peculiarities of Glycerol Conversion to Chemicals Over Zeolite-Based Catalysts. Frontiers in Chemistry, 7 (2019), 233.

DOI: 10.3389/fchem.2019.00233

Google Scholar

[37] A.B.D. Nandiyanto, R. Oktiani, R. Ragadhita, How to Read and Interpret FTIR Spectroscope of Organic Material. Indonesian Journal of Science and Technology, 4 (2019).

DOI: 10.17509/ijost.v4i1.15806

Google Scholar

[38] M.R. Nanda, Y. Zhang, Z. Yuan, W. Qin, H.S. Ghaziaskar, C. Xu, (Charles) Catalytic conversion of glycerol for sustainable production of solketal as a fuel additive: A review. Renewable and Sustainable Energy Reviews, 56 (2016), 1022–1031.

DOI: 10.1016/j.rser.2015.12.008

Google Scholar

[39] M.S. Rahaman, T.K. Phung, M.A. Hossain, E. Chowdhury, S. Tulaphol, S.B. Lalvani, M. O'Toole, G.A. Willing, J.B. Jasinski, M. Crocker, Hydrophobic functionalization of HY zeolites for efficient conversion of glycerol to solketal, Applied Catalysis A General, 592 (2020), 117369.

DOI: 10.1016/j.apcata.2019.117369

Google Scholar

[40] G.L. Catuzo, C.V. Santilli, L. Martins, Hydrophobic-hydrophilic balance of ZSM-5 zeolites on the two-phase ketalization of glycerol with acetone, Catalysis Today, (2020).

DOI: 10.1016/j.cattod.2020.07.008

Google Scholar

[41] J., Kowalska-Kuś, A. Held, K. Nowińska, A continuous-flow process for the acetalization of crude glycerol with acetone on zeolite catalysts. Chemical Engineering Journals, 401 (2020), 126143.

DOI: 10.1016/j.cej.2020.126143

Google Scholar