[1]
A.S. Silitonga, H.H. Masjuki, H.C. Ong, A.H. Sebayang, S. Dharma, F. Kusumo, J. Siswantoro, J. Milano, K. Daud, T.M.I. Mahlia. Evaluation of the engine performance and exhaust emissions of biodiesel-bioethanol-diesel blends using kernel-based extreme learning machine, Energy, 159 (2018), 1075–1087.
DOI: 10.1016/j.energy.2018.06.202
Google Scholar
[2]
F. Ideris, A.H. Shamsuddin, S. Nomanbhay, F. Kusumo, A.S. Silitonga, M.Y. Ong, H.C. Ong, T.M.I. Mahlia, Optimization of ultrasound-assisted oil extraction from Canarium odontophyllum kernel as a novel biodiesel feedstock, Journal of Cleaner Production, 288 (2021), 125563.
DOI: 10.1016/j.jclepro.2020.125563
Google Scholar
[3]
H.C. Ong, H.H. Masjuki, T.M.I. Mahlia, A.S. Silitonga, W.T. Chong, K.Y. Leong, Optimization of biodiesel production and engine performance from high free fatty acid Calophyllum inophyllum oil in CI diesel engine, Energy Conversion Management, 81 (2014), 30–40.
DOI: 10.1016/j.enconman.2014.01.065
Google Scholar
[4]
A.S. Silitonga, A.H. Shamsuddin, T.M.I. Mahlia, J. Milano, F. Kusumo, J. Siswantoro, S. Dharma, A.H. Sebayang, H.H. Masjuki, H.C. Ong, Biodiesel synthesis from Ceiba pentandra oil by microwave irradiation-assisted transesterification: ELM modeling and optimization, Renewable Energy, 146 (2020), 1278–1291.
DOI: 10.1016/j.renene.2019.07.065
Google Scholar
[5]
H.C. Ong, J. Milano, A.S. Silitonga, M.H. Hassan, A.H. Shamsuddin, C.T. Wang, T.M.I. Mahlia, J. Siswantoro, F. Kusumo, J. Sutrisno, Biodiesel production from Calophyllum inophyllum-Ceiba pentandra oil mixture: Optimization and characterization. Journal of Cleaner Production 219 (2019), 183–198.
DOI: 10.1016/j.jclepro.2019.02.048
Google Scholar
[6]
H.C. Ong, Y.W. Tiong, B.H.H. Goh, Y.Y. Gan, M. Mofijur, I.M.R. Fattah, C.T. Chong, M.A. Alam, H.V. Lee, A.S. Silitonga. Recent advances in biodiesel production from agricultural products and microalgae using ionic liquids: Opportunities and challenges. Energy Conversion Management 228 (2021), 113647.
DOI: 10.1016/j.enconman.2020.113647
Google Scholar
[7]
L.P. Ozorio, R. Pianzolli, M.B.S. Mota, C.J.A. Mota, Reactivity of glycerol/acetone ketal (solketal) and glycerol/formaldehyde acetals toward acid-catalyzed hydrolysis. Journal of the Brazilian Chemical Society, 23 (2012).
DOI: 10.1590/s0103-50532012000500019
Google Scholar
[8]
J.A. Melero, G. Vicente, G. Morales, M. Paniagua, J. Bustamante, Oxygenated compounds derived from glycerol for biodiesel formulation: Influence on EN 14214 quality parameters, Fuel 89 (2010), 2011–(2018).
DOI: 10.1016/j.fuel.2010.03.042
Google Scholar
[9]
A.L. Maksimov, A.I. Nekhaev, D.N. Ramazanov, Y.A. Arinicheva, A.A. Dzyubenko, S.N. Khadzhiev, Preparation of high-octane oxygenate fuel components from plant-derived polyols, Petroleum Chemistry, 51 (2011), 61–69.
DOI: 10.1134/s0965544111010117
Google Scholar
[10]
I. Corrêa, R.P.V. Faria, A.E. Rodrigues, Continuous Valorization of Glycerol into Solketal: Recent Advances on Catalysts, Processes, and Industrial Perspectives. Sustainable Chemistry, 2 (2021).
DOI: 10.3390/suschem2020017
Google Scholar
[11]
I. Fatimah, I. Sahroni, G. Fadillah, M.M. Musawwa, T.M.I Mahlia, O.Muraza, Glycerol to Solketal for Fuel Additive: Recent Progress in Heterogeneous Catalysts, Energies, 12 (2019).
DOI: 10.3390/en12152872
Google Scholar
[12]
G.S. Dmitriev, A.V. Terekhov, L.N. Zanaveskin, A.L. Maksimov, S.N. Khadzhiev, Kinetics of the Formation of Solketal in the Presence of Sulfuric Acid, Kinetic and Catalysis, 59 (2018), 504–508.
DOI: 10.1134/s002315841804002x
Google Scholar
[13]
F. Taddeo, R. Esposito, V. Russo, M. Di Serio, Kinetic Modeling of Solketal Synthesis from Glycerol and Acetone Catalyzed by an Iron(III) Complex. Catalysts, 11 (2021).
DOI: 10.3390/catal11010083
Google Scholar
[14]
R. Zhou, Y. Jiang, H. Zhao, B. Ye, L. Wang, Z. Hou, Synthesis of solketal from glycerol over modified SiO2 supported p-phenolsulfonic acid catalyst, Fuel, 291 (2021), 120207.
DOI: 10.1016/j.fuel.2021.120207
Google Scholar
[15]
J. Kowalska-Kus, A. Held, M. Frankowski, K. Nowinska, Solketal formation from glycerol and acetone over hierarchical zeolites of different structure as catalysts, Journal of Molecular Catalysis A: Chemical, 426 (2017), 205–212.
DOI: 10.1016/j.molcata.2016.11.018
Google Scholar
[16]
S. Saepurahman, R. Hashaikeh, T. Kurniawan, A top-down approach to preparation of H-Y zeolite nanoparticles. Asia-Pacific Journal of Science and Technology, 26 (2021).
Google Scholar
[17]
T. Kurniawan, O. Muraza, I.A. Bakare, M.A. Sanhoob, A.M. Al-Amer, Isomerization of n-Butane over Cost-Effective Mordenite Catalysts Fabricated via Recrystallization of Natural Zeolites. Industrial & Engineering Chemistry Research, 57 (2018).
DOI: 10.1021/acs.iecr.7b04040
Google Scholar
[18]
P. Manjunathan, S.P. Maradur, A.B. Halgeri, G.V. Shanbhag, Room temperature synthesis of solketal from acetalization of glycerol with acetone: Effect of crystallite size and the role of acidity of beta zeolite. Journal of Molecular Catalysis A: Chemical, 2015, 396, 47–54.
DOI: 10.1016/j.molcata.2014.09.028
Google Scholar
[19]
S.S. Priya, P.R. Selvakannan, K.V.R. Chary, M.L. Kantam, S.K. Bhargava, Solvent-free microwave-assisted synthesis of solketal from glycerol using transition metal ions promoted mordenite solid acid catalysts. Molecular Catalysis, 434 (2017), 184–193.
DOI: 10.1016/j.mcat.2017.03.001
Google Scholar
[20]
C. Ferreira, A. Araujo, V. Calvino-Casilda, M.G. Cutrufello, E. Rombi, A.M. Fonseca, M.A. Bañares, I.C. Neves, Y zeolite-supported niobium pentoxide catalysts for the glycerol acetalization reaction, Microporous Mesoporous Materials, 271 (2018), 243–251.
DOI: 10.1016/j.micromeso.2018.06.010
Google Scholar
[21]
B.K. Raja, N. Mohindra, U. Goswami, B. Modhera, Conversion of Glycerol to Solketal using Heterogeneous Catalysts. Journal of The Institution of Engineers, (2021).
DOI: 10.1007/s40034-020-00200-2
Google Scholar
[22]
A.S.M. Junaid, C. Street, W. Wang, M.M. Rahman, W. An, W.C. McCaffrey, S.M. Kuznicki, Integrated extraction and low severity upgrading of oilsands bitumen by activated natural zeolite catalysts, Fuel, 94 (2012), 457–464.
DOI: 10.1016/j.fuel.2011.10.043
Google Scholar
[23]
Sariman, S. Synthesis of Na-A Zeolite from Natural Zeolites. Indonesian Mining Journal, 08 (2005), 37–51.
Google Scholar
[24]
H.I. Mahdi, E. Irawan, N. Nuryoto, J. Jayanudin, H. Sulistyo, W.B. Sediawan, O. Muraza, Glycerol Carbonate Production from Biodiesel Waste Over Modified Natural Clinoptilolite. Waste and Biomass Valorization (2016).
DOI: 10.1007/s12649-016-9495-3
Google Scholar
[25]
X. Chen, Z. An, Y. Wang, Q. Ma, X. Feng, Y. Liu, C. Yang, Green BTX production from methyl oleate over hierarchical HZSM-5 zeolites prepared by NaOH treatment, Fuel, 290 (2021), 119798.
DOI: 10.1016/j.fuel.2020.119798
Google Scholar
[26]
T. Kurniawan, Nuryoto, Rahmayetty, Characterization and Application of Bayah Natural Zeolites for Ammonium Capture: Isotherm and Kinetic, Material Science Forum, 988 (2020), 51–64.
DOI: 10.4028/www.scientific.net/msf.988.51
Google Scholar
[27]
X. Wang, R. Li, C. Yu, Y. Liu, L. Zhang, C. Xu, H. Zhou, Enhancing the dimethyl ether carbonylation performance over mordenite catalysts by simple alkaline treatment, Fuel 239 (2019), 794–803.
DOI: 10.1016/j.fuel.2018.10.147
Google Scholar
[28]
R.B. Lima, M.M.S. Neto, D.S. Oliveira, A.G.D. Santos, L.D. Souza, V.P.S. Caldeira, Obtainment of hierarchical ZSM-5 zeolites by alkaline treatment for the polyethylene catalytic cracking. Advanced Powder Technology, 32 (2021), 515–523.
DOI: 10.1016/j.apt.2020.12.030
Google Scholar
[29]
Y. Shi, Q. Zhou, Z. Qin, Z. Wu, W. Jiao, M. Dong, W. Fan, J. Wang, Hierarchically structured Pt/K-Beta zeolites for the catalytic conversion of n-heptane to aromatics. Microporous Mesoporous Materials, 324 (2021), 111308.
DOI: 10.1016/j.micromeso.2021.111308
Google Scholar
[30]
H. Zhang, Z. Hu, L.H. Huang, K. Zhang, L. Song, Z. Wang, J. Shi, Y. Ma, Zhuang, W. Shen. Dehydration of Glycerol to Acrolein over Hierarchical ZSM-5 Zeolites: Effects of Mesoporosity and Acidity. ACS Catalysis, 5, (2015) 2548–2558.
DOI: 10.1021/cs5019953
Google Scholar
[31]
A. Talebian-Kiakalaieh, S. Tarighi, Hierarchical faujasite zeolite-supported heteropoly acid catalyst for acetalization of crude-glycerol to fuel additives, Journal of Industrial Engineering Chemistry, 79 (2019), 452–464.
DOI: 10.1016/j.jiec.2019.07.021
Google Scholar
[32]
I. Marantos, George E. Christidis, Mihaela Ulman Zeolite Formation and Deposits. In Natural Zeolites Handbook, (2011).
DOI: 10.2174/978160805261511201010028
Google Scholar
[33]
IZA No Title Available online: http://www.iza-online.org/natural/Datasheets/Mordenite/ mordenite.htm.
Google Scholar
[34]
T. Kurniawan, S. Bahri, A. Diyanah, N.D. Milenia, N. Nuryoto, K. Faungnawakij, S. Thongratkaew, M. Roil Bilad, N. Huda, Improving Ammonium Sorption of Bayah Natural Zeolites by Hydrothermal Method. Processes, 8 (2020).
DOI: 10.3390/pr8121569
Google Scholar
[35]
C.S. Triantafillidis, N.P. Evmiridis, L. Nalbandian, I.A. Vasalos, Performance of ZSM-5 as a Fluid Catalytic Cracking Catalyst Additive: Effect of the Total Number of Acid Sites and Particle Size, Industrial Engineering Chemistry Research, 38 (1999), 916–927.
DOI: 10.1021/ie980395j
Google Scholar
[36]
O. Muraza, Peculiarities of Glycerol Conversion to Chemicals Over Zeolite-Based Catalysts. Frontiers in Chemistry, 7 (2019), 233.
DOI: 10.3389/fchem.2019.00233
Google Scholar
[37]
A.B.D. Nandiyanto, R. Oktiani, R. Ragadhita, How to Read and Interpret FTIR Spectroscope of Organic Material. Indonesian Journal of Science and Technology, 4 (2019).
DOI: 10.17509/ijost.v4i1.15806
Google Scholar
[38]
M.R. Nanda, Y. Zhang, Z. Yuan, W. Qin, H.S. Ghaziaskar, C. Xu, (Charles) Catalytic conversion of glycerol for sustainable production of solketal as a fuel additive: A review. Renewable and Sustainable Energy Reviews, 56 (2016), 1022–1031.
DOI: 10.1016/j.rser.2015.12.008
Google Scholar
[39]
M.S. Rahaman, T.K. Phung, M.A. Hossain, E. Chowdhury, S. Tulaphol, S.B. Lalvani, M. O'Toole, G.A. Willing, J.B. Jasinski, M. Crocker, Hydrophobic functionalization of HY zeolites for efficient conversion of glycerol to solketal, Applied Catalysis A General, 592 (2020), 117369.
DOI: 10.1016/j.apcata.2019.117369
Google Scholar
[40]
G.L. Catuzo, C.V. Santilli, L. Martins, Hydrophobic-hydrophilic balance of ZSM-5 zeolites on the two-phase ketalization of glycerol with acetone, Catalysis Today, (2020).
DOI: 10.1016/j.cattod.2020.07.008
Google Scholar
[41]
J., Kowalska-Kuś, A. Held, K. Nowińska, A continuous-flow process for the acetalization of crude glycerol with acetone on zeolite catalysts. Chemical Engineering Journals, 401 (2020), 126143.
DOI: 10.1016/j.cej.2020.126143
Google Scholar