[1]
P. Balakrishnan, M. S. Sreekala, M. Kunaver, M. Huskić, and S. Thomas, Morphology, transport characteristics and viscoelastic polymer chain confinement in nanocomposites based on thermoplastic potato starch and cellulose nanofibers from pineapple leaf, Carbohydr. Polym., vol. 169, p.176–188, 2017,.
DOI: 10.1016/j.carbpol.2017.04.017
Google Scholar
[2]
T. I. Gromovykh et al., Structural organization of bacterial cellulose: The origin of anisotropy and layered structures, Carbohydr. Polym., vol. 237, p.116140, 2020,.
Google Scholar
[3]
W. W. Y. Voon, B. J. Muhialdin, N. L. Yusof, Y. Rukayadi, and A. S. Meor Hussin, Bio-Cellulose production by Beijerinckia fluminensis WAUPM53 and Gluconacetobacter xylinus 0416 in Sago By-product medium, Appl. Biochem. Biotechnol., vol. 187, no. 1, p.211–220, 2018,.
DOI: 10.1007/s12010-018-2807-2
Google Scholar
[4]
J. Ye et al., Bacterial cellulose production by Acetobacter xylinum ATCC 23767 using tobacco waste extract as culture medium, Bioresour. Technol., vol. 274, p.518–524, 2019,.
DOI: 10.1016/j.biortech.2018.12.028
Google Scholar
[5]
R. T. A. Machado et al., Komagataeibacter rhaeticus grown in sugarcane molasses-supplemented culture medium as a strategy for enhancing bacterial cellulose production, Ind. Crops Prod., vol. 122, p.637–646, 2018,.
DOI: 10.1016/j.indcrop.2018.06.048
Google Scholar
[6]
R. A. Ilyas et al., Sugar palm (Arenga pinnata (Wurmb.) Merr) cellulosic fibre hierarchy: A comprehensive approach from macro to nano scale, J. Mater. Res. Technol., vol. 8, no. 3, p.2753–2766, 2019,.
DOI: 10.1016/j.jmrt.2019.04.011
Google Scholar
[7]
R. Breuer et al., Development and processing of flame retardant cellulose acetate compounds for foaming applications, J. Appl. Polym. Sci., vol. 137, no. 28, p.1–14, 2020,.
DOI: 10.1002/app.48863
Google Scholar
[8]
N. C. Homem and M. T. P. Amorim, Synthesis of cellulose acetate using as raw material textile wastes, Mater. Today Proc., vol. 31, 2019,.
DOI: 10.1016/j.matpr.2020.01.494
Google Scholar
[9]
M. A. Wsoo, S. Shahir, S. P. Mohd Bohari, N. H. M. Nayan, and S. I. A. Razak, A review on the properties of electrospun cellulose acetate and its application in drug delivery systems: A new perspective, Carbohydr. Res., vol. 491, p.107978, 2020,.
DOI: 10.1016/j.carres.2020.107978
Google Scholar
[10]
ASTM, ASTM D871 Standard methods of testing cellulose acetate, American Society for Testing and Materials, Philadelphia, (1991).
Google Scholar
[11]
P. Cazón, G. Velázquez, and M. Vázquez, Bacterial cellulose films: Evaluation of the water interaction, Food Packag. Shelf Life, vol. 25, p.100526, 2020,.
DOI: 10.1016/j.fpsl.2020.100526
Google Scholar
[12]
A. B. Ballén, I. Kuritka, and P. Saha, Preparation and characterization of a bioartificial polymeric material: Bilayer of cellulose acetate-PVA, Int. J. Polym. Sci., vol. 2016, 2016, doi: https://doi.org/10.1155/2016/3172545.
DOI: 10.1155/2016/3172545
Google Scholar
[13]
O. S. Serbanescu, A. M. Pandele, F. Miculescu, and S. I. Voicu, Synthesis and characterization of cellulose acetate membranes with self-indicating properties by changing the membrane surface color for separation of Gd(III), Coatings, vol. 10, no. 5, 2020, doi: https://doi.org/10.3390/coatings10050468.
DOI: 10.3390/coatings10050468
Google Scholar
[14]
S. Nadiratuzzahra and D. Tristantini, Cellulose Acetate from oil palm empty fruit bunches waste as biodegradable microbeads for making scrubs, AIP Conf. Proc., vol. 2223, p.050001, 2020, doi: https://doi.org/10.1063/5.0005117.
DOI: 10.1063/5.0005117
Google Scholar
[15]
D. Umaningrum, M. Dewi Astuti, R. Nurmasari, Hassanuddin, A. Mulyasuryani, and D. Mardiana, Variation of Iodine mass and acetylation time on cellulose acetate synthesis from rice straw, Indones. J. Chem. Res., vol. 8, no. 3, p.228–233, 2021,.
DOI: 10.30598//ijcr.2021.7-dew
Google Scholar
[16]
N. Tulos, D. Harbottle, A. Hebden, P. Goswami, and R. S. Blackburn, Kinetic analysis of cellulose acetate/cellulose II hybrid fiber formation by alkaline hydrolysis, ACS Omega, vol. 4, no. 3, p.4936–4942, 2019,.
DOI: 10.1021/acsomega.9b00159
Google Scholar
[17]
N. Atykyan, V. Revin, and V. Shutova, Raman and FT-IR Spectroscopy investigation the cellulose structural differences from bacteria Gluconacetobacter sucrofermentans during the Different regimes of cultivation on a molasses media, AMB Express, vol. 10, no. 1, 2020,.
DOI: 10.1186/s13568-020-01020-8
Google Scholar
[18]
F. R. Sultanov, C. Daulbayev, B. Bakbolat, and Z. A. Mansurov, Development of electroforming method for coating of polymer membranes by graphene oxide, Eurasian J. Phys. Funct. Mater., vol. 2, no. 2, p.104–109, 2018,.
DOI: 10.29317/ejpfm.2018020202
Google Scholar