Preparation of Modified Starch Nanoparticles from Beneng Taro (Xanthosoma undipes K. Koch) as Active Packaging Materials via Nanoprecipitation Method

Article Preview

Abstract:

Starch nanoparticles is one of the most recently developed starch products that have been used in plastic and food packaging applications. The aim of this study was to investigate the production of modified starch nanoparticles for active food packaging materials. Starch nanoparticles were fabricated via nanoprecipitation method and characterized by Particle Size Analyzer (PSA), Scanning Electron Microscopy (SEM), and Ultraviolet (UV)-visible (UV-Vis) spectrophotometry. The modification process was conducted by adding lemongrass oil as active ingredient under rapid stirring. The result showed that modified starch nanoparticles exhibited spherical particles with a diameter of approximately 300-400 nm. The present method for modification of starch nanoparticles may provide an alternative approach to increase the usability of starch from Beneng Taro as local produce in Banten Province.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1057)

Pages:

19-25

Citation:

Online since:

March 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Le Corre, J. Bras, A.J.B. Dufresne, Starch nanoparticles: a review, 11 (2010) 1139-1153.

DOI: 10.1021/bm901428y

Google Scholar

[2] M.M. Abdel-Mottaleb, D. Neumann, A.J.I.j.o.p. Lamprecht, In vitro drug release mechanism from lipid nanocapsules (LNC), 390 (2010) 208-213.

DOI: 10.1016/j.ijpharm.2010.02.001

Google Scholar

[3] K. Biji, C. Ravishankar, C. Mohan, T.S.J.J.o.f.s. Gopal, technology, Smart packaging systems for food applications: a review, 52 (2015) 6125-6135.

DOI: 10.1007/s13197-015-1766-7

Google Scholar

[4] A. Caldonazo, S.L. Almeida, A.F. Bonetti, R.E.L. Lazo, M. Mengarda, F.S.J.I.J.o.B.M. Murakami, Pharmaceutical applications of starch nanoparticles: A scoping review, (2021).

DOI: 10.1016/j.ijbiomac.2021.03.061

Google Scholar

[5] C. Silvestre, D. Duraccio, S.J.P.i.p.s. Cimmino, Food packaging based on polymer nanomaterials, 36 (2011) 1766-1782.

DOI: 10.1016/j.progpolymsci.2011.02.003

Google Scholar

[6] S.J.W.J.o.S. Tunma, Technology, Starch based nanocomposites in active packaging for extended shelf life of fresh fruits, 15 (2018) 273-281.

DOI: 10.48048/wjst.2018.3849

Google Scholar

[7] C.C. Villa, L.T. Sanchez, N.D. Rodriguez-Marin, Starch nanoparticles and nanocrystals as bioactive molecule carriers, in: Polymers for agri-food applications, Springer, 2019, pp.91-98.

DOI: 10.1007/978-3-030-19416-1_6

Google Scholar

[8] P.H. Campelo, A.S. Sant'Ana, M.T.P.S.J.C.O.i.F.S. Clerici, Starch nanoparticles: production methods, structure, and properties for food applications, 33 (2020) 136-140.

Google Scholar

[9] S. Hedayati, M. Niakousari, Z.J.I.j.o.b.m. Mohsenpour, Production of tapioca starch nanoparticles by nanoprecipitation-sonication treatment, 143 (2020) 136-142.

DOI: 10.1016/j.ijbiomac.2019.12.003

Google Scholar

[10] H.-Y. Kim, S.S. Park, S.-T.J.C. Lim, S.B. Biointerfaces, Preparation, characterization and utilization of starch nanoparticles, 126 (2015) 607-620.

DOI: 10.1016/j.colsurfb.2014.11.011

Google Scholar

[11] K. Kraśniewska, S. Galus, M.J.I.j.o.m.s. Gniewosz, Biopolymers-based materials containing silver nanoparticles as active packaging for food applications–A review, 21 (2020) 698.

DOI: 10.3390/ijms21030698

Google Scholar

[12] D.J. McClements, J.J.C.r.i.f.s. Rao, nutrition, Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity, 51 (2011) 285-330.

DOI: 10.1080/10408398.2011.559558

Google Scholar

[13] C. Liu, Y. Qin, X. Li, Q. Sun, L. Xiong, Z.J.I.j.o.b.m. Liu, Preparation and characterization of starch nanoparticles via self-assembly at moderate temperature, 84 (2016) 354-360.

DOI: 10.1016/j.ijbiomac.2015.12.040

Google Scholar

[14] P.M. Gonçalves, C.P.Z. Noreña, N.P. da Silveira, A. Brandelli, Characterization of starch nanoparticles obtained from Araucaria angustifolia seeds by acid hydrolysis and ultrasound, LWT - Food Science and Technology, 58 (2014) 21-27.

DOI: 10.1016/j.lwt.2014.03.015

Google Scholar

[15] A. Kasim, Preparation and characterization of sago (metroxylon sp.) Starch nanoparticles using hydrolysis-precipitation method, in: Journal of Physics: Conference Series, IOP Publishing, 2020, p.012021.

DOI: 10.1088/1742-6596/1481/1/012021

Google Scholar

[16] Y. Qin, C. Liu, S. Jiang, L. Xiong, Q.J.I.C. Sun, Products, Characterization of starch nanoparticles prepared by nanoprecipitation: Influence of amylose content and starch type, 87 (2016) 182-190.

DOI: 10.1016/j.indcrop.2016.04.038

Google Scholar

[17] S. Agustina, M. Tokuda, H. Minami, C. Boyer, P.B. Zetterlund, Solvent Effects on the Synthesis of Polymeric Nanoparticles via Block Copolymer Self-Assembly Using Microporous Membranes, in: Materials Science Forum, Trans Tech Publ, 2020, pp.324-330.

DOI: 10.4028/www.scientific.net/msf.1000.324

Google Scholar

[18] S. Agustina, M. Tokuda, H. Minami, C. Boyer, P.B.J.R.C. Zetterlund, Engineering, Synthesis of polymeric nano-objects of various morphologies based on block copolymer self-assembly using microporous membranes, 2 (2017) 451-457.

DOI: 10.1039/c7re00032d

Google Scholar

[19] F. Hernández-Carmona, Y. Morales-Matos, H. Lambis-Miranda, J.J.J.o.e.c.e. Pasqualino, Starch extraction potential from plantain peel wastes, 5 (2017) 4980-4985.

DOI: 10.1016/j.jece.2017.09.034

Google Scholar

[20] U. Rodsuwan, U. Pithanthanakul, K. Thisayakorn, D. Uttapap, K. Boonpisuttinant, S. Vatanyoopaisarn, B. Thumthanaruk, V. Rungsardthong, Preparation and characterization of gamma oryzanol loaded zein nanoparticles and its improved stability, 9 (2021) 616-624.

DOI: 10.1002/fsn3.1973

Google Scholar

[21] Y. Anwar, N.A. Ningtiyas, P.J.C.R.o.B. Simanjuntak, Biotechnology, Isolation of citronellal from Cymbopogon nardus (L) Rendle and its activity test as a burn healing in mice, 2 (2020) 105-108.

DOI: 10.5614/crbb.2020.2.1/nodz4501

Google Scholar