The Effect of Orientation Angle and Layer Thickness on Surface Roughness of ABS Material on FDM

Article Preview

Abstract:

Surface roughness of ABS material on FDM process due to different orientation angle and layer thickness are investigated using an experimental method. The aim of this paper is to determine the effect of orientation angle and layer thickness on surface roughness on 3-dimension FDM printing on ABS material. A rectangle model with 60 mm length,10 mm in width, and 10 mm in height is used in this research. The orientation angle of model is 30, 45, and 60 degrees in layer thickness of 0.15 mm and 0.25 mm. The results indicates that the different orientation angle of the layer thickness causes the roughness value of the printed surface. The roughness surface value increases along with increasing of the orientation angle. The highest surface roughness value occurs at 60 degrees orientation angle in 0.15 mm layer thickness.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1057)

Pages:

3-10

Citation:

Online since:

March 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. T. Dwiyati, A. Kholil, R. Riyadi, and S. E. Putra, 2019, Influence of layer thickness and 3D printing direction on tensile properties of ABS material, J. Phys. Conf. Ser., 1402(6) 0–6.

DOI: 10.1088/1742-6596/1402/6/066014

Google Scholar

[2] P. Alexander, S. Allen, and D. Dutta, 1998, Part orientation and build cost determination in layered manufacturing, CAD Comput. Aided Des., 30(5) 343–356, (1998).

DOI: 10.1016/s0010-4485(97)00083-3

Google Scholar

[3] M. Taufik and P. K. Jain, 2013, Role of build orientation in layered manufacturing: A review, Int. J. Manuf. Technol. Manag., 27(1–3) 47–73.

Google Scholar

[4] O. A. Mohamed, S. H. Masood, and J. L. Bhowmik, 2015, Optimization of fused deposition modeling process parameters: a review of current research and future prospects, Adv. Manuf., 3(1) 42–53.

DOI: 10.1007/s40436-014-0097-7

Google Scholar

[5] E. Yasa, O. Poyraz, E. U. Solakoglu, G. Akbulut, and S. Oren, 2016, A Study on the Stair Stepping Effect in Direct Metal Laser Sintering of a Nickel-based Superalloy, Procedia CIRP, 45 175–178.

DOI: 10.1016/j.procir.2016.02.068

Google Scholar

[6] I. Buj-Corral, A. Domínguez-Fernández, and R. Durán-Llucià, 2019, Influence of print orientation on surface roughness in fused deposition modeling (FDM) processes, Materials (Basel), 12(23).

DOI: 10.3390/ma12233834

Google Scholar

[7] M. S. Alsoufi and A. E. Elsayed, 2017, How Surface Roughness Performance of Printed Parts Manufactured by Desktop FDM 3D Printer with PLA+ is Influenced by Measuring Direction, Am. J. Mech. Eng., 5(5) 211–222.

Google Scholar

[8] Kovan V, Tezel T, Topal ES, and Camurlu HE, 2018, Printing Parameters Effect on Surface Characteristics of 3D Printed Pla Materials, Mach. Technol. Mater., 12(7) 266–269.

Google Scholar

[9] L. Di Angelo, P. Di Stefano, and A. Marzola, 2017, Surface quality prediction in FDM additive manufacturing, Int. J. Adv. Manuf. Technol., 93(9–12) 3655–3662.

DOI: 10.1007/s00170-017-0763-6

Google Scholar

[10] P. Sreedhar, C. MathikumarManikandan, and G. Jothi, 2012, Experimental Investigation of Surface Roughness for Fused Deposition Modeled Part with Different Angular Orientation, Int. J. Adv. Des. Manuf. Technol., 5(3) 21–28.

Google Scholar

[11] N. Vidakis, M. Petousis, N. Vaxevanidis, and J. Kechagias, 2020, Surface roughness investigation of poly-jet 3D printing, Mathematics, 8(10) 1–14.

DOI: 10.3390/math8101758

Google Scholar

[12] K. Kumar and G. S. Kumar, 2015, An experimental and theoretical investigation of surface roughness of poly-jet printed parts: This paper explains how local surface orientation affects surface roughness in a poly-jet process, Virtual Phys. Prototyp., 10(1) 23–34, (2015).

DOI: 10.1080/17452759.2014.999218

Google Scholar

[13] H. S. Byun and K. H. Lee, 2005, Determination of the optimal build direction for different rapid prototyping processes using multi-criterion decision making, Robot. Comput. Integr. Manuf., 22(1) 69–80.

DOI: 10.1016/j.rcim.2005.03.001

Google Scholar

[14] M. S. Alsoufi, M. W. Alhazmi, D. K. Suker, M. Yunus, and R. O. Malibari, 2019, From 3D models to FDM 3D prints: Experimental study of chemical treatment to reduce stairs-stepping of semi-sphere profile, AIMS Mater. Sci., 6(6) 1086–1106.

DOI: 10.3934/matersci.2019.6.1086

Google Scholar

[15] L. Hiegemann, C. Agarwal, C. Weddeling, and A. E. Tekkaya, 2016, Reducing the stair step effect of layer manufactured surfaces by ball burnishing, AIP Conf. Proc., 1769 1–7.

DOI: 10.1063/1.4963612

Google Scholar

[16] I. Gibson, D. Rosen, and R. Stucker, 2015, Additive Manufacturing Technologies., 2nd Ed. New York: Springer.

Google Scholar

[17] V. D. Sagias, K. I. Giannakopoulos, and C. Stergiou, 2018, Mechanical Properties of 3D Printed Polymer Specimens, Procedia Struct. Integr., 10 85–90.

DOI: 10.1016/j.prostr.2018.09.013

Google Scholar