A Preliminary Study of Isolation and Characterization of Nanocrystalline Cellulose from Microcrystalline Cellulose by Acid Hydrolysis Process

Article Preview

Abstract:

This research focuses on the isolation of MCC (microcrystalline cellulose) into NCC (nanocrystalline cellulose) by acid hydrolysis process. The sulfuric acid hydrolysis (44 wt.% H2SO4) aims to fibrillation from MCC into NCC material. NCC has good properties such as high-surface-area, high-aspect-ratio, weight light, and reactive materials. The morphology of NCC was characterized by SEM (Scanning Electron Microscope) and TEM. The physical characterization was tested using FTIR, XRD, and TGA. The morphological result showed that the particle size of NCC was more homogeneous with a diameter size of 25±3 nm with 310±5 nm in length. The physical properties of NCC better slightly than MCC, indicated by the increasing crystallinity index value from 74.8 to 76.4%, and it has a high thermal resistance of 330°C.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1057)

Pages:

11-18

Citation:

Online since:

March 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yudhanto F., and Heru SB Rochardjo, Application of taguchi method for selection parameter bleaching treatments against mechanical and physical properties of agave cantala fiber, IOP Conference Series: Mater. Sci. and Eng. Vol. 352. No. 1. IOP Publishing, (2018).

DOI: 10.1088/1757-899x/352/1/012002

Google Scholar

[2] Listyanda, R.F., Kusmono, Wildan, M.W. and Ilman, M.N., Extraction and characterization of nanocrystalline cellulose (NCC) from ramie fiber by sulphuric acid hydrolysis, AIP Conf. Proc. Vol. 2217. No. 1. AIP Publishing LLC, (2020).

DOI: 10.1063/5.0001068

Google Scholar

[3] Reddy, J.P. and Rhim, J.W., Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose, Carb. Poly. 110 (2014): 480-488.

DOI: 10.1016/j.carbpol.2014.04.056

Google Scholar

[4] Kusmono, K., A preliminary study of extraction and characterization of nanocrystalline cellulose (NCC) from ramie fiber, J. of Mater. Process. and Char. 1.1 (2020).

DOI: 10.22146/jmpc.51418

Google Scholar

[5] Frone, A.N., Panaitescu, D.M., Donescu, D., Spataru, C.I., Radovici, C., Trusca, R. and Somoghi, R., Preparation and characterization of PVA composites with cellulose nanofibers obtained by ultrasonication, BioRes. 6.1 (2011): 487-512.

DOI: 10.15376/biores.6.1.487-512

Google Scholar

[6] Fortunati, E., Puglia, D., Luzi, F., Santulli, C., Kenny, J.M. and Torre, L., Binary PVA bio-nanocomposites containing cellulose nanocrystals extracted from different natural sources: Part I." Carb. poly. 97.2 (2013): 825-836.

DOI: 10.1016/j.carbpol.2013.03.075

Google Scholar

[7] Sultana, T., Sultana, S., Nur, H.P. and Khan, M.W., Studies on Mechanical, Thermal and Morphological Properties of Betel Nut Husk Nano Cellulose Reinforced Biodegradable Polymer Composites, Jour. of Comp. Sci. 4.3 (2020): 83.

DOI: 10.3390/jcs4030083

Google Scholar

[8] Rochardjo, H.S., Fatkhurrohman, A.K. and Yudhanto, F., Fabrication of Nanofiltration Membrane based on Polyvinyl Alcohol Nanofibers Reinforced with Cellulose Nanocrystal using Electrospinning Techniques, Int. Jour. of Tech. 12, 2 (2021).

DOI: 10.14716/ijtech.v12i2.4173

Google Scholar

[9] Yudhanto, F., Jamasri and Rochardjo, H.S.B., Physical and thermal properties of cellulose nanofibers (CNF) extracted from agave cantala fibers using chemical-ultrasonic treatment, Int. Rev.of Mech. Eng. 12 (2018): 597-603.

DOI: 10.15866/ireme.v12i7.14931

Google Scholar

[10] French, A.D. and Cintrón, M.S., Cellulose polymorphy, crystallite size, and the Segal crystallinity index, Cellulose 20.1 (2013): 583-588.

DOI: 10.1007/s10570-012-9833-y

Google Scholar

[11] Xie, J., Hse, C.Y., Cornelis, F., Hu, T., Qi, J. and Shupe, T.F., Isolation and characterization of cellulose nanofibers from bamboo using microwave liquefaction combined with chemical treatment and ultrasonication, Carb. Poly. 151 (2016): 725-734.

DOI: 10.1016/j.carbpol.2016.06.011

Google Scholar

[12] Kargarzadeh, H., Ahmad, I., Abdullah, I., Dufresne, A., Zainudin, S.Y. and Sheltami, R.M., Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers, Cellulose 19.3 (2012): 855-866.

DOI: 10.1007/s10570-012-9684-6

Google Scholar

[13] Fatkhurrohman, Rochardjo, H.S.B., Kusumaatmaja, A. and Yudhanto, F., Extraction and effect of vibration duration in ultrasonic process of cellulose nanocrystal (CNC) from ramie fiber, AIP Conf. Proc. Vol. 2262. No. 1. AIP Publishing LLC, (2020).

DOI: 10.1063/5.0015794

Google Scholar

[14] Yang, Y.P., Zhang, Y., Lang, Y.X. and Yu, M.H., Structural ATR-IR analysis of cellulose fibers prepared from a NaOH complex aqueous solution, IOP conf. series: mat. Sci.and eng. Vol. 213. No. 1. IOP Publishing, (2017).

DOI: 10.1088/1757-899x/213/1/012039

Google Scholar

[15] Yudhanto, F., Jamasri, J., Rochardjo, H. and Kusumaatmaja, A., Experimental Study of Polyvinyl Alcohol Nanocomposite Film Reinforced by Cellulose Nanofibers from Agave Cantala, Int. Jour. of Eng. 34.4 (2021): 987-998.

DOI: 10.5829/ije.2021.34.04a.25

Google Scholar

[16] Yudhanto, F. and Rochardjo, H.S.B., Physical and Mechanical Characterization of Polyvinyl Alcohol Nanocomposite Made from Cellulose Nanofibers, Mater. Sci. For. Vol. 988. Trans Tech Publications Ltd, (2020).

DOI: 10.4028/www.scientific.net/msf.988.65

Google Scholar

[17] Sosiati, H., Muhaimin, M.M., Wijayanti, D.A. and Triyana, K., Microscopic characterization of cellulose nanocrystals isolated from sisal fibers." Mater. Sci. For. Vol. 827. Trans Tech Publications Ltd, (2015).

DOI: 10.4028/www.scientific.net/msf.827.174

Google Scholar

[18] Rosli, N.A., Ahmad, I. and Abdullah, I., Isolation and characterization of cellulose nanocrystals from Agave angustifolia fibre, BioRes. 8.2 (2013): 1893-1908.

DOI: 10.15376/biores.8.2.1893-1908

Google Scholar

[19] Krishnadev, P., Subramanian, K.S., Janavi, G.J., Ganapathy, S. and Lakshmanan, A., Synthesis and Characterization of Nano-fibrillated Cellulose Derived from Green Agave americana L. Fiber." BioRes. 15.2 (2020): 2442-2458.

DOI: 10.15376/biores.15.2.2442-2458

Google Scholar

[20] Das, M. and Chakraborty, D., Influence of alkali treatment on the fine structure and morphology of bamboo fibers, Jour. of App. Poly. Sci. 102.5 (2006): 5050-5056.

DOI: 10.1002/app.25105

Google Scholar

[21] Kaushik, A., Singh, M. and Verma, G., Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw, Carb. Poly. 82.2 (2010): 337-345.

DOI: 10.1016/j.carbpol.2010.04.063

Google Scholar

[22] Yudha, V., Rochardjo, H.S.B., Jamasri, J., Widyorini, R., Yudhanto, F. and Darmanto, S., Isolation of cellulose from salacca midrib fibers by chemical treatments, IOP Conf. Series: Mat. Sci. and Eng. Vol. 434. No. 1. IOP Publishing, (2018).

DOI: 10.1088/1757-899x/434/1/012078

Google Scholar

[23] Listyanda, R.F., Wildan, M.W. and Ilman, M.N., Preparation and characterization of cellulose nanocrystal extracted from ramie fibers by sulfuric acid hydrolysis, Heliyon 6.11 (2020).

DOI: 10.1016/j.heliyon.2020.e05486

Google Scholar

[24] Rochardjo, H.S.B., Jamasri, Yudhanto, F., Extraction of Natural Fibers by High-Speed Blender to Produce Cellulose Sheet Composite, Int. Rev. of Mech. Eng. 13.12 (2019): 691-699.

DOI: 10.15866/ireme.v13i12.17586

Google Scholar