Self-Templating Synthesized Silica Nanocapsules and Fabrication of Nanocomposite for Enhancing the Anti-Felting of Wool Fabrics

Article Preview

Abstract:

In this study, silica nanocapsules within silica shell (SNPs) based on an amphiphilic silica precursor polymer – poly (ethylene glycol) substituted hyperbranched polyethoxysiloxane (PEOS-m PEG) was synthesized through a self-assembly method in a fully aqueous with high efficiency. SNPs was homogeneously distributed in waterborne polyurethane to study the influence on the mechanical properties of the nanocomposite as a novel anti-felting agent for wool fabric. The mechanical properties of the nanocomposite anti-felting agent films improved in comparison with the neat polymer. The storage modulus and tensile strength was increased by 143% and 49%, respectively. The novel nanocomposite anti-felting agent was coated on wool fabrics by a pad-dry-cure process. The area shrinkage of the obtained wool fabrics with nanocomposite was 0.8%, much lower than the fabric treated with the same dosage of neat polymer, 4.1%. The warp tensile strength of the wool fabric was increased to 212.2N with lower polymer consumption by 40%.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1058)

Pages:

21-31

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Luo, K. Cai, Y. Hu, L. Zhao, P. Liu, L. Duan and W. Yang: Angew. Chem. Int. Ed. Vol. 50 (2011), pp.640-643.

Google Scholar

[2] D. Tarn, C. E. Ashley, M. Xue, E. C. Carnes, J. I. Zink, C. J. Brinker: Acc. Chem. Res. Vol. 46 (2013), pp.792-801.

DOI: 10.1021/ar3000986

Google Scholar

[3] P. M. Ajayan, L. S. Schadler, P. Braun: Nanocomposite Science and Technology; Wiley-VCH: Weinheim, (2003).

Google Scholar

[4] F. Abdelghaffar, M. G. Mahmoud, M. S. Asker, S. S. Mohamed: J. Ind. Eng. Chem. Vol. 99 (2021), pp.224-234.

Google Scholar

[5] M.M. Hassan, K. Koyama:Dyes Pigm. Vol. 159 (2018), pp.517-526.

Google Scholar

[6] B. Tang, J. Li, X. Hou, T. Afrin, L. Sun, X. Wang: Ind. Eng. Chem. Res. Vol. 52 (2013), pp.4556-4563.

Google Scholar

[7] F.M. Kelly, J.H. Johnston: ACS Appl. Mater. Interf. Vol. 3 (2011), pp.1083-1092.

Google Scholar

[8] M. Pagliaro: Silica-based materials for advanced chemical applications; RSC Pub.: Cambridge, (2009).

Google Scholar

[9] R. Beck, S. Guterres, A. Pohlmann: Nanocosmetics and Nanomedicines; Springer: Berlin, Heidelberg, (2011).

Google Scholar

[10] S. Benita: Microencapsulation: Methods and Industrial Applications; Informa Healthcare: London, (2006).

Google Scholar

[11] C. Barbe, J. Bartlett, L. G. Kong, K. Finnie, H. Q. Lin, M. Larkin, S. Calleja, A. Bush, G. Calleja: Adv. Mater. Vol. 16 (2004), pp.1959-1966.

DOI: 10.1002/adma.200400771

Google Scholar

[12] F. Q. Tang, L. L. Li, D. Chen: Adv. Mater. Vol. 24 (2012), pp.1504-1534.

Google Scholar

[13] S. Sakamoto, A. Shimojima, K. Miyasaka, J. Ruan, O. Terasaki, K. J. Kuroda:Am. Chem. Soc. Vol. 131 (2009), pp.9634-9635.

DOI: 10.1021/ja903176k

Google Scholar

[14] A. Shimojima, Z. Liu, T. Ohsuna, O. Terasaki, K. J. Kuroda: Am. Chem. Soc. Vol. 127 (2005), pp.14108-14116.

DOI: 10.1021/ja0541736

Google Scholar

[15] K. R. Millington: Color. Technol. Vol. 122 (2006), pp.169-186.

Google Scholar

[16] A. Kaur, J. N. Chakraborty: J. Cleaner Prod. Vol. 108 (2015), pp.503-513.

Google Scholar

[17] J. H. Shi, X. Han, K. L. Yan: Text. Res. J. Vol. 84 (2014), pp.1174-1182.

Google Scholar

[18] Q. Zhao, G. Sun, K. L. Yan, A. J. Zhou, Y. Chen: Carbohydr. Polym. Vol. 91 (2013), pp.169-174.

Google Scholar

[19] Z. Du, C. Y. Hu, Z. Xie, K. L. Yan: Fibers Polym. Vol. 18 (2017), pp.641-648.

Google Scholar

[20] R. M. Sankar, K. S. Meera, A. B. Mandal, S. N. Jaisankar: High Perform. Polym. Vol. 25 (2012), pp.135-146.

Google Scholar

[21] X. Deng, F. Liu, Y. Luo, Y. Chen, D. Jia: Prog. Org. Coat. Vol. 60 (2007), pp.11-16.

Google Scholar

[22] M. Serkis, M. Špírková, J. Hodan, J. Kredatusová: Prog. Org. Coat. Vol. 101 (2016), pp.342-349.

Google Scholar

[23] T. C. Merkel, B. D. Freeman, R. J. Spontak, Z. He, I. Pinnau, P. Meakin, A. J. Hill: Science Vol. 296 (2002), pp.519-522.

DOI: 10.1126/science.1069580

Google Scholar

[24] N. Mizoshita, T. Tani, S. Inagaki: Chem. Soc. Rev. Vol. 42 (2011), pp.789-800.

Google Scholar

[25] A. Kulak, Y. J. Lee, Y. S. Park, H. S. Kim, G. S. Lee, K. B. Yoon: Adv. Mater. Vol. 14 (2002), pp.526-529.

Google Scholar

[26] E. P. Plueddemann: Silane Coupling Agents, Plueddemann, E. P., Ed. Springer US: Boston, MA, (1982).

Google Scholar

[27] X. M. Zhu, M. Jaumann, K. Peter, M. Möller, C. Melian, A. Adams- Buda, D. E. Demco, B. Blümich: Macromolecules Vol. 39 (2006), pp.1701-1708.

DOI: 10.1021/ma052179+

Google Scholar

[28] K. M. Seeni Meera, R. Murali Sankar, J. Paul, S. N. Jaisankar, A. B. Mandal: Phys. Chem. Chem. Phys. Vol. 16 (2014), pp.9276-9288.

DOI: 10.1039/c4cp00516c

Google Scholar

[29] G. Agrawal, M. Schürings, X. M. Zhu, A. Pich: Polymer Vol. 53 (2012), pp.1189-1197.

Google Scholar

[30] I. A. Rahman, M. Jafarzadeh, C. S. Sipaut: Ceram. Int. Vol. 35 (2009), pp.1883-1888.

Google Scholar

[31] K. M. Seeni Meera, R. Murali Sankar, S. N. Jaisankar, A. B. Mandal: J. Phys. Chem. B Vol. 117 (2013), pp.2682-2694.

DOI: 10.1021/jp3097346

Google Scholar

[32] C. Zhang, K. L. Yan, C. Y. Hu, Y. L. Zhao, Z. Chen, X. M. Zhu, M. Möller: J. Mater. Chem. B Vol. 3 (2015), pp.1261-1267.

Google Scholar

[33] S. Zhang, L. Ren, J. Jiang, C. Yang, M. Chen, X. Liu: Prog. Org. Coat. Vol. 70 (2011), pp.1-8.

Google Scholar