[1]
Kummara, S, Patil, MB & Uriah, T 2016, Synthesis, characterization, biocompatible and anticancer activity of green and chemically synthesized silver nanoparticles – A comparative study,, Biomedicine and Pharmacotherapy, pp.10-21.
DOI: 10.1016/j.biopha.2016.09.003
Google Scholar
[2]
Khanna, P, Kaur, A & Goyal, D 2019, Algae-based metallic nanoparticles: Synthesis, characterization and applications,, Journal of Microbiological Methods, vol. 163, pp.1-22.
DOI: 10.1016/j.mimet.2019.105656
Google Scholar
[3]
Schröfel, A, Kratošová, G, Šafařík, I, Šafaříková, M, Raška, I & Shor, LM 2014, Applications of biosynthesized metallic nanoparticles–a review,, Acta Biomaterialia, vol. 10, no. 10, pp.4023-4042.
DOI: 10.1016/j.actbio.2014.05.022
Google Scholar
[4]
Oliveira, TMN & Vaz, C 2018, Marine toxicology: Assays and perspectives for developing countries,, in Häder DP & Erzinger GS (eds), Bioassays, Elsevier, pp.387-401.
Google Scholar
[5]
Libralato, G 2014, The case of Artemia spp. In nanoecotoxicology,, Marine Environmental Research, vol. 101, pp.38-43.
DOI: 10.1016/j.marenvres.2014.08.002
Google Scholar
[6]
Rajeshkumar, S, Kannan, C & Annadurai, G 2012, Synthesis and characterization of antimicrobial silver nanoparticles using marine brown seaweed Padina tetrastromatica,, Drug Invention Today, vol. 4, no. 10, pp.511-513.
Google Scholar
[7]
Selvi, BCG, Madhavan, J & Santhanam, A 2016, Cytotoxic effect of silver nanoparticles synthesized from Padina tetrastromatica on breast cancer cell line,, Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 7, no. 3, pp.1-8.
DOI: 10.1088/2043-6262/7/3/035015
Google Scholar
[8]
Marimuthu Alias Antonysamy, J, Thangiah, S & Irulappan, R 2015, Green Synthesis of Silver Nanoparticles using Dictyota bartayresiana JV Lamouroux and their Cytotoxic Potentials,, International Biological and Biomedical Journal, vol. 1, no. 3, pp.112-118.
Google Scholar
[9]
Riaz, M, Mutreja, V, Sareen, S, Ahmad, B, Faheem, M, Zahid, N, Jabbour, G & Park, J 2021, Exceptional antibacterial and cytotoxic potency of monodisperse greener AgNPs prepared under optimized pH and temperature,, Scientific Reports, vol. 11, no. 1, pp.1-11.
DOI: 10.1038/s41598-021-82555-z
Google Scholar
[10]
Bhattacharjee, S 2016, DLS and zeta potential–what they are and what they are not?,, Journal of Controlled Release, vol. 235, pp.337-351.
DOI: 10.1016/j.jconrel.2016.06.017
Google Scholar
[11]
Phull, AR, Abbas, Q, Ali, A, Raza, H, Zia, M & Haq, IU 2016, Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliata,, Future Journal of Pharmaceutical Sciences, vol. 2, no. 1, pp.1-36.
DOI: 10.1016/j.fjps.2016.03.001
Google Scholar
[12]
Abdel-Raouf, N, Al-Enazi, NM, Ibraheem, IBM, Alharbi, RM & Alkhulaifi, MM 2019, Biosynthesis of silver nanoparticles by using of the marine brown alga Padina pavonica and their characterization,, Saudi Journal of Biological Sciences, vol. 26, no. 6, pp.1207-1215.
DOI: 10.1016/j.sjbs.2018.01.007
Google Scholar
[13]
Arulvasu, C, Jennifer, SM, Prabhu, D & Chandhirasekar, D 2014, Toxicity effect of silver nanoparticles in brine shrimp Artemia,, The Scientific World Journal, vol. 2014, pp.1-10.
DOI: 10.1155/2014/256919
Google Scholar