Inhibition Performance of Arachis Hypogaea Extracts on 316L Steel in HCl Solution

Article Preview

Abstract:

The inhibition performance of Arachis hypogaea (AH) surfactant-based oil on 316L steel in 5 M HCl solution was studied by weight loss method. Result showed that AH shielded 316L steel from the severe corrosion effect of of Cl- anions responsible for 316L corrosion in HCl at 0% AH concentration. The optimum inhibition efficiency occurred as 89.72% at 504 h as AH retarded the redox reaction for all other samples of inhibited AH inhibitor concentration. Adsorption of AH onto 316L surface was effective as the regression values moved close to unity with 0.9458, obeying Langmuir isotherm adsorption principle.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1059)

Pages:

35-39

Citation:

Online since:

April 2022

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Chambers, S. Srinivasan, K.M. Yap, M. Yunovich, Corrosion in crude distillation unit overhead operations: A comprehensive review. In: NACE corrosion, conference expo, 2011, p.1–11.

Google Scholar

[2] J. Gutzeit, Effect of organic chloride contamination of crude oil on refinery corrosion, NACE International, Houston, (2000).

Google Scholar

[3] M.A. Fajobi, R.T. Loto, O.O. Oluwole, Crude distillation overhead system": Corrosion and Control, J. Phys.: Conf. Ser. 1378 (4) (2019) 042090.

DOI: 10.1088/1742-6596/1378/4/042090

Google Scholar

[4] C.M. Fernandes, L.X. Alvarez, N.E. Dos Santos, A.C.M. Barrios, E.A. Ponzio, Green synthesis of 1-benzyl-4-phenyl-1H-1, 2, 3-triazole, its application as corrosion inhibitor for mild steel in acidic medium and new approach of classical electrochemical analyses, Corros. Sci. 149 (2019) 185-194.

DOI: 10.1016/j.corsci.2019.01.019

Google Scholar

[5] R.T. Loto, M. Fajobi, O. Oluwole, C.A. Loto, Corrosion inhibition effect of calcium gluconate on mild steel in artificial seawater, Cogent Eng. 7(2020) 1712155.

DOI: 10.1080/23311916.2020.1712155

Google Scholar

[6] O.S.I. Fayomi, A.A. Atayero, M.P. Mubiayi, I.G. Akande, P.A. Adewuyi, M.A. Fajobi, A.P.I. Popoola, Mechanical and opto-electrical response of embedded smart composite coating produced via electrodeposition technique for embedded system in defence application, J. Alloys Compd. 773 (2019) 305-313.

DOI: 10.1016/j.jallcom.2018.09.191

Google Scholar

[7] O.A. Odunlami, O.T. Olomukoro, R.T. Loto, Corrosion inhibition of rosemary oil on high carbon steel in sulphuric acid medium, IOP Conf. Ser.: Mater. Sci. Eng. 811 (2020) 012031.

DOI: 10.1088/1757-899x/811/1/012031

Google Scholar

[8] M.A. Fajobi, R.T. Loto, O.O. Oluwole, Corrosion in crude distillation overhead system: A review, J. Bio- Tribo-Corros. 5 (2019) 67.

DOI: 10.1007/s40735-019-0262-4

Google Scholar

[9] N.R. Rosli, S.M. Yusuf, A. Sauki, W.M.R.W. Razali, Musa Sapientum (Banana) peels as green corrosion inhibitor for mild steel, Key Eng Mater. 797 (2019) 230-239.

DOI: 10.4028/www.scientific.net/kem.797.230

Google Scholar

[10] R.T. Loto, M. Fajobi, L. Oluwole, C.A. Loto, Electrochemical analysis of the inhibition performance of glucobiogen on low-carbon steel in neutral chloride solution, IOP Conf. Ser.: Mater. Sci. Eng.770 (2020) 012045.

DOI: 10.1088/1757-899x/770/1/012045

Google Scholar

[11] N. Soltani, N. Tavakkoli, M. Khayatkashani, M.R. Jalali, A. Mosavizade, Green approach to corrosion inhibition of 304 stainless steel in hydrochloric acid solution by the extract of Salvia officinalis leaves. Corros. Sci. 62 (2012) 122-135.

DOI: 10.1016/j.corsci.2012.05.003

Google Scholar

[12] S.A.M. Refaey, F. Taha, F., & Abd El-Malak, A. M. (2006). Corrosion and inhibition of 316L stainless steel in neutral medium by 2-Mercaptobenzimidazole. Int. J. Electrochem. Sci, 1, 80-91.

DOI: 10.20964/1020080

Google Scholar

[13] A.S. Fouda, A.S. Ellithy, Inhibition effect of 4-phenylthiazole derivatives on corrosion of 304L stainless steel in HCl solution, Corros Sci. 51(4) (2009) 868-875.

DOI: 10.1016/j.corsci.2009.01.011

Google Scholar

[14] A.I. Muñoz, J.G. Antón, J.L. Guiñón, V.P. Herranz, Inhibition effect of chromate on the passivation and pitting corrosion of a duplex stainless steel in LiBr solutions using electrochemical techniques, Corros. Sci. 49(8) (2007) 3200-3225.

DOI: 10.1016/j.corsci.2007.03.002

Google Scholar

[15] K.A. Soni, A. Oladunjoye, R. Nannapaneni, M.W. Schilling, J.L. Silva, B. Mikel, R.H. Bailey, Inhibition and inactivation of Salmonella Typhimurium biofilms from polystyrene and stainless-steel surfaces by essential oils and phenolic constituent carvacrol, J. Food Prot. 76(2) (2013) 205-212.

DOI: 10.4315/0362-028x.jfp-12-196

Google Scholar

[16] N. Caliskan, E. Akbas, Corrosion inhibition of austenitic stainless steel by some pyrimidine compounds in hydrochloric acid, Mats. & Corr. 63(3) (2012) 231-237.

DOI: 10.1002/maco.201005788

Google Scholar

[17] M. Behpour, S.M. Ghoreishi, M.K. Kashani, N. Soltani, Inhibition of 304 stainless steel corrosion in acidic solution by Ferula gumosa (galbanum) extract, Mats. & Corr. 60(11) (2009) 895-898.

DOI: 10.1002/maco.200905182

Google Scholar

[18] M.A. Fajobi, O.S.I. Fayomi, I.G. Akande, O.A. Odunlami, Inhibitive Performance of Ibuprofen Drug on Mild Steel in 0.5 M of H 2 SO 4 Acid, J. Bio Tribo Corros. 5(3) (2019) 79.

DOI: 10.1007/s40735-019-0271-3

Google Scholar

[19] R. Farahati, S.M. Mousavi-Khoshdel, A. Ghaffarinejad, H. Behzadi, Experimental and computational study of penicillamine drug and cysteine as water-soluble green corrosion inhibitors of mild steel, Prog. Org. Coat. 142 (2020) 105567.

DOI: 10.1016/j.porgcoat.2020.105567

Google Scholar