[1]
S. PalDey, S.C. Deevi, Single layer and multilayer wear resistant coatings of (Ti, Al)N: a review, Materials Science&Engineering A, 342 (2003) 58-79.
DOI: 10.1016/s0921-5093(02)00259-9
Google Scholar
[2]
J.E. Sundgren, J. Birch, G. Håkansson, L. Hultman, U. Helmersson, Growth, structural characterization and properties of hard and wear-protective layered materials, Thin Solid Films, 193-194 (1990) 818-831.
DOI: 10.1016/0040-6090(90)90235-6
Google Scholar
[3]
Mayrhofer, F. Kunc, J. Musil, C. Mitterer, A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings, Thin Solid Films, 415 (2002) 151-159.
DOI: 10.1016/s0040-6090(02)00511-4
Google Scholar
[4]
S.H. Yao, W.H. Kao, Y.L. Su, T.H. Liu, Effect of periods on wear performance of TiN/AlN superlattice films, Materials Science & Engineering A, 392 (2005) 380-385.
DOI: 10.1016/j.msea.2004.10.017
Google Scholar
[5]
N.J.M. Carvalho, E. Zoestbergen, B.J. Kooi, J.T.M.D. Hosson, Stress analysis and microstructure of PVD monolayer TiN and multilayer TiN/(Ti,Al)N coatings, Thin Solid Films, 429 (2003) 179-189.
DOI: 10.1016/s0040-6090(03)00067-1
Google Scholar
[6]
S.H. Yao, Evaluation of TiN/AlN nano-multilayer coatings on drills used for micro-drilling, Surface & Coatings Technology, 197 (2005) 351-357.
DOI: 10.1016/j.surfcoat.2004.06.018
Google Scholar
[7]
W.D. Münz, Titanium aluminum nitride films: A new alternative to TiN coatings, Journal of Vacuum Science & Technology A, 4 (1986) 2717-2725.
DOI: 10.1116/1.573713
Google Scholar
[8]
I.W. Kim, L. Quan, L.D. Marks, S.A. Barnett, Critical thickness for transformation of epitaxially stabilized cubic AlN in superlattices, Applied Physics Letters, 78 (2001) 892-894.
DOI: 10.1063/1.1345831
Google Scholar
[9]
A. Madan, I.W. Kim, S.C. Cheng, P. Yashar, Stabilization of Cubic AlN in Epitaxial AlN/TiN Superlattices, Physical Review Letters, 78 (1997) 1743-1746.
DOI: 10.1103/physrevlett.78.1743
Google Scholar
[10]
M. Ueno, A. Onodera, O. Shimomura, K. Takemura, X-ray observation of the structural phase transition of aluminum nitride under high pressure, Phys.rev.b, 45 (1992) 10123-10126.
DOI: 10.1103/physrevb.45.10123
Google Scholar
[11]
V. Pankov, M. Evstigneev, R.H. Prince, Role of substrate in the pseudomorphic stabilization of rocksalt-type AlN phase in AlN/TiN superlattices, Applied Physics Letters, 80 (2002) 4142-4144.
DOI: 10.1063/1.1482798
Google Scholar
[12]
A. Thobor, C. Rousselot, C. Clement, J. Takadoum, N. Martin, R. Sanjines, F. Levy, Enhancement of mechanical properties of TiN/AlN multilayers by modifying the number and the quality of interfaces, Surface and Coatings Technology, 124 (2000) 210-221.
DOI: 10.1016/s0257-8972(99)00655-6
Google Scholar
[13]
U. Helmersson, S. Todorova, S.A. Barnett, J.E. Sundgren, L.C. Markert, J.E. Greene, Growth of single‐crystal TiN/VN strained‐layer superlattices with extremely high mechanical hardness, Journal of Applied Physics, 62 (1987) 481-484.
DOI: 10.1063/1.339770
Google Scholar
[14]
H. Jensen, J. Sobota, G. Sorensen, Multilayer film deposition of TiN/AlN on a rotating substrate holder from reactive sputtering of elemental targets of titanium and aluminum, Journal of Vacuum Science & Technology A, 15 (1997) 941-945.
DOI: 10.1116/1.580783
Google Scholar
[15]
S.J. Bull, A.M. Jones, Multilayer coatings for improved performance, Surface & Coatings Technology, 78 (1996) 173-184.
DOI: 10.1016/0257-8972(94)02407-3
Google Scholar
[16]
J.S. Koehler, Attempt to Design a Strong Solid, Physical Review B, 2 (1970) 547-551.
Google Scholar
[17]
T. Suzuki, D. Huang, Y. Ikuhara, Microstructures and grain boundaries of (Ti,Al)N films, Surface and Coatings Technology, 107 (1998) 41-47.
DOI: 10.1016/s0257-8972(98)00550-7
Google Scholar
[18]
H. Zabel, R. Siebrecht, A. Schreyer, Neutron reflectometry on magnetic thin films, Physica B, 276-278 (2000) 17-21.
DOI: 10.1016/s0921-4526(99)01469-6
Google Scholar
[19]
V. Moraes, H. Riedl, R. Rachbauer, S. Kolozsvári, M. Ikeda, L. Prochaska, S. Paschen, P.H. Mayrhofer, Thermal conductivity and mechanical properties of AlN-based thin films, Journal of Applied Physics, 119 (2016) 225304.
DOI: 10.1063/1.4953358
Google Scholar
[20]
A. Knutsson, M.P. Johansson, P.O.Å. Persson, L. Hultman, M. Odén, Thermal decomposition products in arc evaporated TiAlN/TiN multilayers, Applied Physics Letters, 93 (2008) 143110.
DOI: 10.1063/1.2998588
Google Scholar
[21]
F. Mezei, R. Golub, F. Klose, H. Toews, Focussed beam reflectometer for solid and liquid surfaces, Physica B: Condensed Matter, 213-214 (1995) 898-900.
DOI: 10.1016/0921-4526(95)00317-3
Google Scholar
[22]
M. Björck, G. Andersson, GenX : an extensible X-ray reflectivity refinement program utilizing differential evolution, Journal of Applied Crystallography, 40 (2007) 1174-1178.
DOI: 10.1107/s0021889807045086
Google Scholar
[23]
S.K. Ghose, B.N. Dev, X-ray standing wave and reflectometric characterization of multilayer structures, Physical Review B, 63 (2001) 303-306.
DOI: 10.1103/physrevb.63.245409
Google Scholar
[24]
A. Gupta, D. Kumar, V. Phatak, Asymmetric diffusion at the interfaces in Fe/Si multilayers, Physical review B, 81 (2010) 155402.
DOI: 10.1103/physrevb.81.155402
Google Scholar