Investigation of Interfacial Microstructures of TiN/AlN Multilayers by Neutron Reflectometry

Article Preview

Abstract:

Three alternate TiN/AlN nanostructured multilayers with the TiN layer thicknesses of 60, 70, and 120 Å and the AlN layer thickness of 10 Å were fabricated using dc reactive magnetron sputtering. Microstructural characterizations of the three nano-scale films were performed using nonpolarized specular neutron reflectometry. The results showed that the three TiN/AlN multilayer thin films were typical superlattice films and the thicknesses of the TiN layer and AlN layer in the multilayers were consistent with the design thickness nearly. The interface roughness was asymmetric in all the samples. The interface of AlN growing on TiN was much sharper than that of TiN growing on AlN and the latter was the diffusion interface in the TiN/AlN multilayer films.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1059)

Pages:

47-53

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. PalDey, S.C. Deevi, Single layer and multilayer wear resistant coatings of (Ti, Al)N: a review, Materials Science&Engineering A, 342 (2003) 58-79.

DOI: 10.1016/s0921-5093(02)00259-9

Google Scholar

[2] J.E. Sundgren, J. Birch, G. Håkansson, L. Hultman, U. Helmersson, Growth, structural characterization and properties of hard and wear-protective layered materials, Thin Solid Films, 193-194 (1990) 818-831.

DOI: 10.1016/0040-6090(90)90235-6

Google Scholar

[3] Mayrhofer, F. Kunc, J. Musil, C. Mitterer, A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings, Thin Solid Films, 415 (2002) 151-159.

DOI: 10.1016/s0040-6090(02)00511-4

Google Scholar

[4] S.H. Yao, W.H. Kao, Y.L. Su, T.H. Liu, Effect of periods on wear performance of TiN/AlN superlattice films, Materials Science & Engineering A, 392 (2005) 380-385.

DOI: 10.1016/j.msea.2004.10.017

Google Scholar

[5] N.J.M. Carvalho, E. Zoestbergen, B.J. Kooi, J.T.M.D. Hosson, Stress analysis and microstructure of PVD monolayer TiN and multilayer TiN/(Ti,Al)N coatings, Thin Solid Films, 429 (2003) 179-189.

DOI: 10.1016/s0040-6090(03)00067-1

Google Scholar

[6] S.H. Yao, Evaluation of TiN/AlN nano-multilayer coatings on drills used for micro-drilling, Surface & Coatings Technology, 197 (2005) 351-357.

DOI: 10.1016/j.surfcoat.2004.06.018

Google Scholar

[7] W.D. Münz, Titanium aluminum nitride films: A new alternative to TiN coatings, Journal of Vacuum Science & Technology A, 4 (1986) 2717-2725.

DOI: 10.1116/1.573713

Google Scholar

[8] I.W. Kim, L. Quan, L.D. Marks, S.A. Barnett, Critical thickness for transformation of epitaxially stabilized cubic AlN in superlattices, Applied Physics Letters, 78 (2001) 892-894.

DOI: 10.1063/1.1345831

Google Scholar

[9] A. Madan, I.W. Kim, S.C. Cheng, P. Yashar, Stabilization of Cubic AlN in Epitaxial AlN/TiN Superlattices, Physical Review Letters, 78 (1997) 1743-1746.

DOI: 10.1103/physrevlett.78.1743

Google Scholar

[10] M. Ueno, A. Onodera, O. Shimomura, K. Takemura, X-ray observation of the structural phase transition of aluminum nitride under high pressure, Phys.rev.b, 45 (1992) 10123-10126.

DOI: 10.1103/physrevb.45.10123

Google Scholar

[11] V. Pankov, M. Evstigneev, R.H. Prince, Role of substrate in the pseudomorphic stabilization of rocksalt-type AlN phase in AlN/TiN superlattices, Applied Physics Letters, 80 (2002) 4142-4144.

DOI: 10.1063/1.1482798

Google Scholar

[12] A. Thobor, C. Rousselot, C. Clement, J. Takadoum, N. Martin, R. Sanjines, F. Levy, Enhancement of mechanical properties of TiN/AlN multilayers by modifying the number and the quality of interfaces, Surface and Coatings Technology, 124 (2000) 210-221.

DOI: 10.1016/s0257-8972(99)00655-6

Google Scholar

[13] U. Helmersson, S. Todorova, S.A. Barnett, J.E. Sundgren, L.C. Markert, J.E. Greene, Growth of single‐crystal TiN/VN strained‐layer superlattices with extremely high mechanical hardness, Journal of Applied Physics, 62 (1987) 481-484.

DOI: 10.1063/1.339770

Google Scholar

[14] H. Jensen, J. Sobota, G. Sorensen, Multilayer film deposition of TiN/AlN on a rotating substrate holder from reactive sputtering of elemental targets of titanium and aluminum, Journal of Vacuum Science & Technology A, 15 (1997) 941-945.

DOI: 10.1116/1.580783

Google Scholar

[15] S.J. Bull, A.M. Jones, Multilayer coatings for improved performance, Surface & Coatings Technology, 78 (1996) 173-184.

DOI: 10.1016/0257-8972(94)02407-3

Google Scholar

[16] J.S. Koehler, Attempt to Design a Strong Solid, Physical Review B, 2 (1970) 547-551.

Google Scholar

[17] T. Suzuki, D. Huang, Y. Ikuhara, Microstructures and grain boundaries of (Ti,Al)N films, Surface and Coatings Technology, 107 (1998) 41-47.

DOI: 10.1016/s0257-8972(98)00550-7

Google Scholar

[18] H. Zabel, R. Siebrecht, A. Schreyer, Neutron reflectometry on magnetic thin films, Physica B, 276-278 (2000) 17-21.

DOI: 10.1016/s0921-4526(99)01469-6

Google Scholar

[19] V. Moraes, H. Riedl, R. Rachbauer, S. Kolozsvári, M. Ikeda, L. Prochaska, S. Paschen, P.H. Mayrhofer, Thermal conductivity and mechanical properties of AlN-based thin films, Journal of Applied Physics, 119 (2016) 225304.

DOI: 10.1063/1.4953358

Google Scholar

[20] A. Knutsson, M.P. Johansson, P.O.Å. Persson, L. Hultman, M. Odén, Thermal decomposition products in arc evaporated TiAlN/TiN multilayers, Applied Physics Letters, 93 (2008) 143110.

DOI: 10.1063/1.2998588

Google Scholar

[21] F. Mezei, R. Golub, F. Klose, H. Toews, Focussed beam reflectometer for solid and liquid surfaces, Physica B: Condensed Matter, 213-214 (1995) 898-900.

DOI: 10.1016/0921-4526(95)00317-3

Google Scholar

[22] M. Björck, G. Andersson, GenX : an extensible X-ray reflectivity refinement program utilizing differential evolution, Journal of Applied Crystallography, 40 (2007) 1174-1178.

DOI: 10.1107/s0021889807045086

Google Scholar

[23] S.K. Ghose, B.N. Dev, X-ray standing wave and reflectometric characterization of multilayer structures, Physical Review B, 63 (2001) 303-306.

DOI: 10.1103/physrevb.63.245409

Google Scholar

[24] A. Gupta, D. Kumar, V. Phatak, Asymmetric diffusion at the interfaces in Fe/Si multilayers, Physical review B, 81 (2010) 155402.

DOI: 10.1103/physrevb.81.155402

Google Scholar