[1]
A. Kalaiyarasan, P. Ramesh, and P. Paramasivam, Study of Advanced Composite Materials in Aerospace Application,, Int. J. Sci. Res. Mech. Mater. Eng., vol. 2, no. 1, p.25–34, 2018, [Online]. Available: http://ijsrmme.com/paper/IJSRMME16119.pdf.
Google Scholar
[2]
A. S. Rahate, K. R. Nemade, and S. A. Waghuley, Polyphenylene sulfide ( PPS ): state of the art and applications,, vol. 29, no. 6, p.471–489, 2013,.
DOI: 10.1515/revce-2012-0021
Google Scholar
[3]
K. D. White and J. A. Sherwood, Finite Element Simulation of Thickness Changes in Laminate during Thermoforming,, 2017, vol. 030033, p.1–7.
DOI: 10.1063/1.5008020
Google Scholar
[4]
R. Nadlene, M. R. Mansor, G. Omar, S. F. S. Kamarulzaman, M. H. Zin, and N. Razali, Chapter 15 - Out-of-autoclave as a sustainable composites manufacturing process for aerospace applications, 1st ed. Malaysia: Elseiver Inc., (2021).
DOI: 10.1016/b978-0-12-819482-9.00011-3
Google Scholar
[5]
H. Xiong, N. Hamila, and P. Boisse, Consolidation Modeling during Thermoforming of Thermoplastic Composite Prepregs,, MDPI, vol. 12, no. 2853, p.1–23, 2019, doi: https://doi.org/10.3390/ma12182853.
DOI: 10.3390/ma12182853
Google Scholar
[6]
S. Ropers, Bending Behavior of Thermoplastic Composite Sheets, 1st ed. Wolfsburg, Germany: Springer Fachmedien Wiesbaden GmbH, (2017).
Google Scholar
[7]
S. Ste-marie, Thermostamping of Long-Fiber Thermoplastic Composites: Consideration of Wrinkles, Distortions, and Cost,, Concordia University Montreal, Quebec, Canada, (2018).
Google Scholar
[8]
D. Dörr et al., A Benchmark Study of Finite Element Codes for Forming Simulation of Thermoplastic UD-Tapes,, Procedia CIRP, vol. 66, p.101–106, 2017,.
DOI: 10.1016/j.procir.2017.03.223
Google Scholar
[9]
S. P. Haanappel, U. Sachs, R. H. W. Ten Thije, B. Rietman, and R. Akkerman, Forming of thermoplastic composites,, Key Eng. Mater., vol. 504–506, p.237–242, 2012,.
DOI: 10.4028/www.scientific.net/kem.504-506.237
Google Scholar
[10]
S. Mashau, An Investigation into the Manufacturing of Complex, Three-Dimensional Components using Continuous Fibre Reinforced Thermoplastic Composites,, University of the Witwatersrand, Johannesburg, (2017).
Google Scholar
[11]
R. Schmitt, R. Schmitt, A. Witte, M. Janßen, and F. Bertelsmeier, Metrology Assisted Assembly of Airplane Structure Elements ScienceDirect Metrology assisted assembly of airplane structure elements,, no. December 2014, 2015,.
DOI: 10.1016/j.procir.2014.10.073
Google Scholar
[12]
Composite forming simulations | AniForm., https://aniform.com/ (accessed Sep. 29, 2021).
Google Scholar
[13]
A. D. Rietman, M. S. Niazi, and R. Akkerman, FibreChain: characterization and modeling of thermoplastic composites processing,, Compos. Week @ Leuven Texcomp-11 Conf., no. February 2016, p.2–7, 2013, [Online]. Available: http://doc.utwente.nl/91050/1/CWL_full_paper_Rietman.pdf.
Google Scholar
[14]
A. Stamopoulos and A. Di Ilio, Numerical and experimental analysis of the thermoforming process parameters of semi-spherical glass fibre thermoplastic parts,, Procedia CIRP, vol. 99, no. 2021, p.420–425, 2021,.
DOI: 10.1016/j.procir.2021.03.060
Google Scholar
[15]
D. Brands, Internship Report Preforming Process Simulation,, Neckarsulm, Germany, (2015).
Google Scholar