In Silico Study on Predicting Effects of H243L Mutation in Bacillus subtilis Levansucrase towards Sucrose Binding Affinity

Article Preview

Abstract:

Levan is a branched polysaccharide made from fructose monomers linked by β (2-6) and β (2-1) glycosidic bonds. Levan biosynthesis is catalyzed with levansucrase (EC 2.4.1.10) using sucrose as its substrate. In the present study, we are interested in investigating the elongation capability of the polymerase domain of the enzyme. The other study on Bacillus subtilis levansucrase found that the mutation of His243 into Leu has successfully prolonged the elongation of the polymer. The study, however, has not clearly accounted for the effect of the mutation. The current study aimed to employ in silico method to reveal the effect of the mutation. The initial model of substrate binding on the wild-type and H243L mutant levansucrase was prepared by molecular docking. The stability of the substrate-binding was evaluated by molecular dynamics simulation, while the binding affinity was calculated by the MM-PBSA method. The result showed that the H243L mutant was more stable in binding the substrate than the wild type. This was supported by the calculated binding affinity for H243L mutant and wild-type, which were −2.9 and +4,8 kcal/mol, respectively. Further molecular analysis suggested that mutation of His243 into Leu made the nearby Glu340 and Arg246 form additional hydrogen bonds with the substrate.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1061)

Pages:

119-127

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Srikanth, C.H.S.S.S. Reddy, G. Siddartha, M.J. Ramaiah, K.B. Uppuluri, Review on production, characterization and applications of microbial levan, Carbohydr. Polym. 120 (2015) 102–114.

DOI: 10.1016/j.carbpol.2014.12.003

Google Scholar

[2] R. Hertadi, M.M.S. Amari, E. Ratnaningsih, Enhancement of antioxidant activity of levan through the formation of nanoparticle systems with metal ions, Heliyon 6 (2020) e04111.

DOI: 10.1016/j.heliyon.2020.e04111

Google Scholar

[3] S.J. Kim, P.K. Bae, B.H. Chung, Self-assembled levan nanoparticles for targeted breast cancer imaging, Chem. Commun. 51 (2015) 107–110.

DOI: 10.1039/c4cc07679f

Google Scholar

[4] Á. González-Garcinuño, A. Tabernero, G. Marcelo, V. Sebastián, M. Arruebo, J. Santamaría, E.M. del Valle, Differences in levan nanoparticles depending on their synthesis route: Microbial vs cell-free systems, Int. J. Biol. Macromol. 137 (2019) 62–68.

DOI: 10.1016/j.ijbiomac.2019.06.128

Google Scholar

[5] C.S. Hundschell, F. Jakob, A.M. Wagemans, Molecular weight dependent structure of the exopolysaccharide levan, Int. J. Biol. Macromol. 161 (2020) 398–405.

DOI: 10.1016/j.ijbiomac.2020.06.019

Google Scholar

[6] J. Combie, Properties of levan and potential medical uses, ACS Symp. Ser. 934 (2006) 263–269.

Google Scholar

[7] H. Yanase, M. Maeda, E. Hagiwara, H. Yagi, K. Taniguchi, K. Okamoto, Identification of functionally important amino acid residues in Zymomonas mobilis levansucrase, J. Biochem. 132 (2002) 565–572.

DOI: 10.1093/oxfordjournals.jbchem.a003258

Google Scholar

[8] M.E. Ortiz-Soto, C. Possiel, J. Görl, A. Vogel, R. Schmiedel, J. Seibel, Impaired coordination of nucleophile and increased hydrophobicity in the +1 subsite shift levansucrase activity towards transfructosylation, Glycobiology 27 (2017) 755–765.

DOI: 10.1093/glycob/cwx050

Google Scholar

[9] P. Phengnoi, T. Charoenwongpaiboon, K. Wangpaiboon, M. Klaewkla, S. Nakapong, W. Visessanguan, K. Ito, R. Pichyangkura, K. Kuttiyawong, Levansucrase from Bacillus Amyloliquefaciens KK9 and its Y237S variant producing the high bioactive levan-type fructooligosaccharides, Biomolecules 10 (2020) 692.

DOI: 10.3390/biom10050692

Google Scholar

[10] C. He, Y. Yang, R. Zhao, J. Qu, L. Jin, L. Lu, L. Xu, M. Xiao, Rational designed mutagenesis of levansucrase from Bacillus licheniformis 8-37-0-1 for product specificity study, Appl. Microbiol. Biotechnol. 102 (2018) 3217–3228.

DOI: 10.1007/s00253-018-8854-3

Google Scholar

[11] T. Sitthiyotha, R. Pichyangkura, S. Chunsrivirot, Molecular dynamics provides insight into how N251A and N251Y mutations in the active site of Bacillus licheniformis RN-01 levansucrase disrupt production of long-chain levan, PLoS One 13 (2018) e0204915.

DOI: 10.1371/journal.pone.0204915

Google Scholar

[12] M.E. Ortiz-Soto, J.R. Porras-Domínguez, J. Seibel, A.L.M. López-Munguía, A close look at the structural features and reaction conditions that modulate the synthesis of low and high molecular weight fructans by levansucrases, Carbohydr. Polym. 219 (2019) 130–142.

DOI: 10.1016/j.carbpol.2019.05.014

Google Scholar

[13] M.E. Ortiz-Soto, M. Rivera, E. Rudiño-Piñera, C. Olvera, A. López-Munguía, Selected mutations in Bacillus subtilis levansucrase semi-conserved regions affecting its biochemical properties, Protein Eng., Des. Sel. 21 (2008) 589–595.

DOI: 10.1093/protein/gzn036

Google Scholar

[14] L.K. Ozimek, S. Kralj, M.J.E.C. van der Maarel, L. Dijkhuizen, The levansucrase and inulosucrase enzymes of Lactobacillus reuteri 121 catalyse processive and non-processive transglycosylation reactions, Microbiology 154 (2006) 1187–1196.

DOI: 10.1099/mic.0.28484-0

Google Scholar

[15] G. Meng, K. Fütterer, Structural framework of fructosyl transfer in Bacillus subtilis levansucrase, Nat. Struct. Mol. Biol. 10 (2003) 935–941.

DOI: 10.1038/nsb974

Google Scholar

[16] W. Humphrey, A. Dalke, K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graphics 14 (1996) 33–38.

DOI: 10.1016/0263-7855(96)00018-5

Google Scholar

[17] R. Anandakrishnan, B. Aguilar, A.V. Onufriev, H++ 3.0: Automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations, Nucleic Acids Res. 40 (2012) W537–W541.

DOI: 10.1093/nar/gks375

Google Scholar

[18] S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M.R. Shirts, J.C. Smith, P.M. Kasson, D. Van Der Spoel, B. Hess, E. Lindahl, GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit, Bioinformatics 29 (2013) 845–854.

DOI: 10.1093/bioinformatics/btt055

Google Scholar

[19] O. Trott, A.J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem. 31 (2009) 455–461.

DOI: 10.1002/jcc.21334

Google Scholar

[20] R.A. Laskowski, M.B. Swindells, LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery, J. Chem. Inf. Model. 51 (2011) 2778–2786.

DOI: 10.1021/ci200227u

Google Scholar

[21] K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, A.D. Mackerell, CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields, J. Comput. Chem. 31 (2010) 671–690.

DOI: 10.1002/jcc.21367

Google Scholar

[22] M.S.V. Tresanco, M.E. Valdes-Tresanco, P.A. Valiente, E.M. Frías, gmx_MMPBSA (Version v1.4.2), https://zenodo.org/record/4814044#.Ycqej1kxVD8 (2021).

Google Scholar

[23] B.R. Miller, T.D. McGee, J.M. Swails, N. Homeyer, H. Gohlke, A.E. Roitberg, MMPBSA.py: An efficient program for end-state free energy calculations, J. Chem. Theory Comput. 8 (2012) 3314–3321.

DOI: 10.1021/ct300418h

Google Scholar

[24] J. Seibel, R. Moraru, S. Götze, K. Buchholz, S. Na'amnieh, A. Pawlowski, H.J. Hecht, Synthesis of sucrose analogues and the mechanism of action of Bacillus subtilis fructosyltransferase (levansucrase), Carbohydr. Res. 341 (2006) 2335–2349.

DOI: 10.1016/j.carres.2006.07.001

Google Scholar

[25] M. Okuyama, R. Serizawa, M. Tanuma, A. Kikuchi, J. Sadahiro, T. Tagami, W. Lang, A. Kimura, Molecular insight into regioselectivity of transfructosylation catalyzed by GH68 levansucrase and β-fructofuranosidase, J. Biol. Chem. 296 (2021) 100398.

DOI: 10.1016/j.jbc.2021.100398

Google Scholar

[26] A. Homann, R. Biedendieck, S. Götze, D. Jahn, J. Seibel, Insights into polymer versus oligosaccharide synthesis: Mutagenesis and mechanistic studies of a novel levansucrase from Bacillus megaterium, Biochem. J. 407 (2007) 189–198.

DOI: 10.1042/bj20070600

Google Scholar