[1]
R. Srikanth, C.H.S.S.S. Reddy, G. Siddartha, M.J. Ramaiah, K.B. Uppuluri, Review on production, characterization and applications of microbial levan, Carbohydr. Polym. 120 (2015) 102–114.
DOI: 10.1016/j.carbpol.2014.12.003
Google Scholar
[2]
R. Hertadi, M.M.S. Amari, E. Ratnaningsih, Enhancement of antioxidant activity of levan through the formation of nanoparticle systems with metal ions, Heliyon 6 (2020) e04111.
DOI: 10.1016/j.heliyon.2020.e04111
Google Scholar
[3]
S.J. Kim, P.K. Bae, B.H. Chung, Self-assembled levan nanoparticles for targeted breast cancer imaging, Chem. Commun. 51 (2015) 107–110.
DOI: 10.1039/c4cc07679f
Google Scholar
[4]
Á. González-Garcinuño, A. Tabernero, G. Marcelo, V. Sebastián, M. Arruebo, J. Santamaría, E.M. del Valle, Differences in levan nanoparticles depending on their synthesis route: Microbial vs cell-free systems, Int. J. Biol. Macromol. 137 (2019) 62–68.
DOI: 10.1016/j.ijbiomac.2019.06.128
Google Scholar
[5]
C.S. Hundschell, F. Jakob, A.M. Wagemans, Molecular weight dependent structure of the exopolysaccharide levan, Int. J. Biol. Macromol. 161 (2020) 398–405.
DOI: 10.1016/j.ijbiomac.2020.06.019
Google Scholar
[6]
J. Combie, Properties of levan and potential medical uses, ACS Symp. Ser. 934 (2006) 263–269.
Google Scholar
[7]
H. Yanase, M. Maeda, E. Hagiwara, H. Yagi, K. Taniguchi, K. Okamoto, Identification of functionally important amino acid residues in Zymomonas mobilis levansucrase, J. Biochem. 132 (2002) 565–572.
DOI: 10.1093/oxfordjournals.jbchem.a003258
Google Scholar
[8]
M.E. Ortiz-Soto, C. Possiel, J. Görl, A. Vogel, R. Schmiedel, J. Seibel, Impaired coordination of nucleophile and increased hydrophobicity in the +1 subsite shift levansucrase activity towards transfructosylation, Glycobiology 27 (2017) 755–765.
DOI: 10.1093/glycob/cwx050
Google Scholar
[9]
P. Phengnoi, T. Charoenwongpaiboon, K. Wangpaiboon, M. Klaewkla, S. Nakapong, W. Visessanguan, K. Ito, R. Pichyangkura, K. Kuttiyawong, Levansucrase from Bacillus Amyloliquefaciens KK9 and its Y237S variant producing the high bioactive levan-type fructooligosaccharides, Biomolecules 10 (2020) 692.
DOI: 10.3390/biom10050692
Google Scholar
[10]
C. He, Y. Yang, R. Zhao, J. Qu, L. Jin, L. Lu, L. Xu, M. Xiao, Rational designed mutagenesis of levansucrase from Bacillus licheniformis 8-37-0-1 for product specificity study, Appl. Microbiol. Biotechnol. 102 (2018) 3217–3228.
DOI: 10.1007/s00253-018-8854-3
Google Scholar
[11]
T. Sitthiyotha, R. Pichyangkura, S. Chunsrivirot, Molecular dynamics provides insight into how N251A and N251Y mutations in the active site of Bacillus licheniformis RN-01 levansucrase disrupt production of long-chain levan, PLoS One 13 (2018) e0204915.
DOI: 10.1371/journal.pone.0204915
Google Scholar
[12]
M.E. Ortiz-Soto, J.R. Porras-Domínguez, J. Seibel, A.L.M. López-Munguía, A close look at the structural features and reaction conditions that modulate the synthesis of low and high molecular weight fructans by levansucrases, Carbohydr. Polym. 219 (2019) 130–142.
DOI: 10.1016/j.carbpol.2019.05.014
Google Scholar
[13]
M.E. Ortiz-Soto, M. Rivera, E. Rudiño-Piñera, C. Olvera, A. López-Munguía, Selected mutations in Bacillus subtilis levansucrase semi-conserved regions affecting its biochemical properties, Protein Eng., Des. Sel. 21 (2008) 589–595.
DOI: 10.1093/protein/gzn036
Google Scholar
[14]
L.K. Ozimek, S. Kralj, M.J.E.C. van der Maarel, L. Dijkhuizen, The levansucrase and inulosucrase enzymes of Lactobacillus reuteri 121 catalyse processive and non-processive transglycosylation reactions, Microbiology 154 (2006) 1187–1196.
DOI: 10.1099/mic.0.28484-0
Google Scholar
[15]
G. Meng, K. Fütterer, Structural framework of fructosyl transfer in Bacillus subtilis levansucrase, Nat. Struct. Mol. Biol. 10 (2003) 935–941.
DOI: 10.1038/nsb974
Google Scholar
[16]
W. Humphrey, A. Dalke, K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graphics 14 (1996) 33–38.
DOI: 10.1016/0263-7855(96)00018-5
Google Scholar
[17]
R. Anandakrishnan, B. Aguilar, A.V. Onufriev, H++ 3.0: Automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations, Nucleic Acids Res. 40 (2012) W537–W541.
DOI: 10.1093/nar/gks375
Google Scholar
[18]
S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M.R. Shirts, J.C. Smith, P.M. Kasson, D. Van Der Spoel, B. Hess, E. Lindahl, GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit, Bioinformatics 29 (2013) 845–854.
DOI: 10.1093/bioinformatics/btt055
Google Scholar
[19]
O. Trott, A.J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem. 31 (2009) 455–461.
DOI: 10.1002/jcc.21334
Google Scholar
[20]
R.A. Laskowski, M.B. Swindells, LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery, J. Chem. Inf. Model. 51 (2011) 2778–2786.
DOI: 10.1021/ci200227u
Google Scholar
[21]
K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, A.D. Mackerell, CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields, J. Comput. Chem. 31 (2010) 671–690.
DOI: 10.1002/jcc.21367
Google Scholar
[22]
M.S.V. Tresanco, M.E. Valdes-Tresanco, P.A. Valiente, E.M. Frías, gmx_MMPBSA (Version v1.4.2), https://zenodo.org/record/4814044#.Ycqej1kxVD8 (2021).
Google Scholar
[23]
B.R. Miller, T.D. McGee, J.M. Swails, N. Homeyer, H. Gohlke, A.E. Roitberg, MMPBSA.py: An efficient program for end-state free energy calculations, J. Chem. Theory Comput. 8 (2012) 3314–3321.
DOI: 10.1021/ct300418h
Google Scholar
[24]
J. Seibel, R. Moraru, S. Götze, K. Buchholz, S. Na'amnieh, A. Pawlowski, H.J. Hecht, Synthesis of sucrose analogues and the mechanism of action of Bacillus subtilis fructosyltransferase (levansucrase), Carbohydr. Res. 341 (2006) 2335–2349.
DOI: 10.1016/j.carres.2006.07.001
Google Scholar
[25]
M. Okuyama, R. Serizawa, M. Tanuma, A. Kikuchi, J. Sadahiro, T. Tagami, W. Lang, A. Kimura, Molecular insight into regioselectivity of transfructosylation catalyzed by GH68 levansucrase and β-fructofuranosidase, J. Biol. Chem. 296 (2021) 100398.
DOI: 10.1016/j.jbc.2021.100398
Google Scholar
[26]
A. Homann, R. Biedendieck, S. Götze, D. Jahn, J. Seibel, Insights into polymer versus oligosaccharide synthesis: Mutagenesis and mechanistic studies of a novel levansucrase from Bacillus megaterium, Biochem. J. 407 (2007) 189–198.
DOI: 10.1042/bj20070600
Google Scholar