Potential Application of Rhamnolipid-Silica Nanoparticle Complex for Enhanced Oil Recovery Studied with Molecular DynamicsSimulations

Article Preview

Abstract:

Biosurfactants are used as a solution to the use of synthetic surfactants in Enhance Oil Recovery (EOR) process which are not safe for environment. One of the requirements for biosurfactants in EOR is having the ability to reduce the value of the interfacial tension (IFT) to a minimum of 10-3 mN/m. To meet the requirement, the performance of biosurfactants can be improved by having it interact strongly with nanosized support material. In this study, the stability of the free monorhamnolipids (without silica) and the monorhamnolipids-silica nanoparticle complexes at the decane-water interface at 300 K was studied by in silico method. Component density analysis shows that monorhamnolipids and monorhamnolipids-silica nanoparticle complexes diffuse to the decane-water interface. Trajectory analysis of the simulation boxes showed that the complexes were more stable at the decane-water interface. Based on the interaction analysis of the hydrophilic groups as well as hydrogen bonding, the complexes stability on the interface is caused by the strong hydrogen interaction between monorhamnolipids and silica that have more stable properties at the decane-water interface. This causes the complexes are more effective in reducing the IFT of decane and water with a decrease of up to 1.6 mN/m.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1061)

Pages:

105-112

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.S. Belyaev, I.A. Borzenkov, T.N. Nazina, E.P. Rozanova, I.F. Glumov, R.R. Ibatullin, M. V. Ivanov, Use of microorganisms in the biotechnology for the enhancement of oil recovery, Microbiology. 73 (2004) 590–598.

DOI: 10.1023/b:mici.0000044250.21076.0e

Google Scholar

[2] M.S. Kamal, I.A. Hussein, AS Sultan, Review on Surfactant Flooding: Phase Behavior, Retention, IFT, and Field Applications, Energy and Fuels. 31 (2017) 7701–7720.

DOI: 10.1021/acs.energyfuels.7b00353

Google Scholar

[3] R. Sen, Biotechnology in petroleum recovery: The microbial EOR, Prog. Energy Combust. Sci. 34 (2008) 714–724.

Google Scholar

[4] I. Chatzis, N.R. Morrow, Correlation of Capillary Number Relationship for Sandstone., Soc. Pet. Eng. J. 24 (1984) 555–562.

DOI: 10.2118/10114-pa

Google Scholar

[5] S. Vijayakumar, V. Saravanan, Biosurfactants-types, sources and applications, Res. J. Microbiol. 10 (2015) 181–192.

Google Scholar

[6] H. Amani, M.M. Müller, C. Syldatk, R. Hausmann, Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for Ex-situ enhanced oil recovery, Appl. Biochem. Biotechnol. 170 (2013) 1080–1093.

DOI: 10.1007/s12010-013-0249-4

Google Scholar

[7] Q. Wang, X. Fang, B. Bai, X. Liang, P.J. Shuler, W.A. Goddard, Y. Tang, Engineering bacteria for the production of rhamnolipid as an agent for enhanced oil recovery, Biotechnol. Bioeng. 98 (2007) 842–853.

DOI: 10.1002/bit.21462

Google Scholar

[8] F.F. Habibah, R. Hertadi, A.L. Ivansyah, Y. Faozani, Sediaan bahan bionanofluida untuk diaplikasikan pada enhanced oil recovery (EOR) dan metode produksinya, P00202009815, (2020).

Google Scholar

[9] B.A. Suleimanov, F.S. Ismailov, E.F. Veliyev, Nanofluid for enhanced oil recovery, J. Pet. Sci. Eng. 78 (2011) 431–437.

DOI: 10.1016/j.petrol.2011.06.014

Google Scholar

[10] W. Humphrey, A. Dalke, K. Schulten, Visual Molecular Dynamics, J. Mol. Graph. 14 (1996) 33–38.

Google Scholar

[11] B. Cherinka, B.H. Andrews, J. Sánchez-Gallego, J. Brownstein, M. Argudo-Fernández, M. Blanton, K. Bundy, A. Jones, K. Masters, D.R. Law, K. Rowlands, A.N. Weijmans, K. Westfall, R. Yan, Marvin: A tool kit for streamlined access and visualization of the SDSS-IV MaNGA data set, Astron. J. 158 (2019) 74.

DOI: 10.3847/1538-3881/ab2634

Google Scholar

[12] Winmostar V10, X-Ability Co Ltd., Tokyo, Japan (2020).

Google Scholar

[13] P. Hirel, Atomsk: A tool for manipulating and converting atomic data files, Comput. Phys. Commun. 197 (2015) 212–219.

DOI: 10.1016/j.cpc.2015.07.012

Google Scholar

[14] T.G.A. Youngs, Aten - An application for the creation, editing, and visualization of coordinates for glasses, liquids, crystals, and molecules, J. Comput. Chem. 31 (2010) 639–648.

DOI: 10.1002/jcc.21359

Google Scholar

[15] M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith, B. Hess, E. Lindah, GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX. 1-2 (2015) 19–25.

DOI: 10.1016/j.softx.2015.06.001

Google Scholar

[16] A.K. Malde, L. Zuo, M. Breeze, M. Stroet, D. Poger, P.C. Nair, C. Oostenbrink, A.E. Mark, An Automated force field Topology Builder (ATB) and repository: Version 1.0, J. Chem. Theory Comput. 7 (2011) 4026–4037.

DOI: 10.1021/ct200196m

Google Scholar

[17] T. Raček, O. Schindler, D. Toušek, V. Horský, K. Berka, J. Koča, R. Svobodová, Atomic charge calculator II: Web-based tool for the calculation of partial atomic charges, Nucleic Acids Res. 48 (2021) W591–W596.

DOI: 10.1093/nar/gkaa367

Google Scholar

[18] J. Gasteiger, M. Marsili, A new model for calculating atomic charges in molecules, Tetrahedron Lett. 19 (1978) 3181–3184.

DOI: 10.1016/s0040-4039(01)94977-9

Google Scholar

[19] A.K. Rappé, W.A. Goddard, Charge equilibration for molecular dynamics simulations, J. Phys. Chem. 95 (1991) 3358–3363.

DOI: 10.1021/j100161a070

Google Scholar

[20] S.L. Mayo, B.D. Olafson, W.A. Goddard, DREIDING: A generic force field for molecular simulations, J. Phys. Chem. 94 (1990) 8897–8909.

DOI: 10.1021/j100389a010

Google Scholar

[21] H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. Dinola, J.R. Haak, Molecular dynamics with coupling to an external bath, J. Chem. Phys. 81 (1984) 3684–3690.

DOI: 10.1063/1.448118

Google Scholar

[22] M. Luo, L.L. Dai, Molecular dynamics simulations of surfactant and nanoparticle self-assembly at liquid-liquid interfaces, J. Phys.: Condens. Matter 19 (2007) 375109.

DOI: 10.1088/0953-8984/19/37/375109

Google Scholar

[23] X. Wang, C. Chen, K. Binder, U. Kuhn, U. Pöschl, H. Su, Y. Cheng, Molecular dynamics simulation of the surface tension of aqueous sodium chloride: From dilute to highly supersaturated solutions and molten salt, Atmos. Chem. Phys. 18 (2018) 17077–17086.

DOI: 10.5194/acp-18-17077-2018

Google Scholar

[24] G.A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford University Press, New York, (1997).

Google Scholar