Biosynthesis of Gold Nanoparticles Using Aqueous Extract of Lannea coromandelica Bark with Stabilizer Polyacrylic Acid (PAA) and Polyvinyl Alcohol (PVA)

Article Preview

Abstract:

In this research, we have succeeded in synthesizing gold nanoparticles using an aqueous extract of the bark of Lannea coromandelica. The bark of Lannea coromandelica contains many secondary metabolite chemical compounds that can be used as bioreductants. The gold nanoparticles produced were burgundy or purplish with a maximum wavelength of 528–529 nm with an absorbance of 0.298–0.364 during 5 h of storage at room temperature. The IR results showed that compounds containing O–H, C=O, and C–N groups play a role in reducing gold into nanoparticles. The obtained nanoparticles were pure gold nanoparticles with crystallite sizes by XRD characterization of 44.6 nm and 49.11 nm for AuNP-PAA and AuNP-PVA, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1061)

Pages:

97-103

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Najahi-Missaoui, R.D. Arnold, B.S. Cummings, Safe nanoparticles: Are we there yet ?, Int. J. Mol. Sci. 22 (2021) 385.

DOI: 10.3390/ijms22010385

Google Scholar

[2] N. Khlebtsov, L. Dykman, Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies, Chem. Soc. Rev. 40 (2011) 1647–1671.

DOI: 10.1039/c0cs00018c

Google Scholar

[3] M. Nadeem, B.H. Abbasi, M. Younas, W. Ahmad, T. Khan, A review of the green syntheses and antimicrobial applications of gold nanoparticles, Green Chem. Lett. Rev. 10 (2017) 216–227.

DOI: 10.1080/17518253.2017.1349192

Google Scholar

[4] D. Philip, C. Unni, S.A. Aromal, V.K. Vidhu, Murraya koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles, Spectrochim. Acta, Part A 78 (2011) 899–904.

DOI: 10.1016/j.saa.2010.12.060

Google Scholar

[5] S.S. Shankar, A. Rai, A. Ahmad, M. Sastry, Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth, J. Colloid Interface Sci. 275 (2004) 496–502.

DOI: 10.1016/j.jcis.2004.03.003

Google Scholar

[6] D.A. Ghafoor, W.M. Saod, N. Mohammed, Green synthesis of gold nanoparticles using pineapple extract and study their analytical characterization and antibacterial activity, Syst. Rev. Pharm. 11 (2020) 462–465.

Google Scholar

[7] S. Donga, G.R. Bhadu, S. Chanda, Antimicrobial, antioxidant and anticancer activities of gold nanoparticles green synthesized using Mangifera indica seed aqueous extract, Artif. Cells, Nanomed., Biotechnol. 48 (2020) 1315–1325.

DOI: 10.1080/21691401.2020.1843470

Google Scholar

[8] M. Rakhi, B.B. Gopal, Terminalia arjuna bark extract mediated size controlled synthesis of polyshaped gold nanoparticles and its application in catalysis, Int. J. Res. Chem. Environ. 2 (2012) 338–342.

Google Scholar

[9] M.Z. Imam, M. Moniruzzaman, Antinociceptive effect of ethanol extract of leaves of Lannea coromandelica, J. Ethnopharmacol. 154 (2014) 109–115.

DOI: 10.1016/j.jep.2014.03.032

Google Scholar

[10] M. Rahman, A. Khatun, S.J. Uddin, J.A. Shilpi, Comparative effect of Lannea coromandelica (Houtt) Merr leaves and stem barks on acetic acid-induced pain model in mice and chromogenic reagents: Exploring the analgesic potential and phytochemical groups, Pharmacologyonline 1 (2016) 146–152.

Google Scholar

[11] M.K. Manik, M.A. Wahid, S.M.A. Islam, A. Pal, K.T. Ahmed, A comparative study of the antioxidant, antimicrobial and thrombolytic activity of the bark and leaves of Lannea coromandelica (Anacardiaceae), Int. J. Pharm. Sci. Res. 4 (2014) 2609–2614.

Google Scholar

[12] A.W. Wahab, A. Karim, N. La Nafie, P. Satrimafitrah, T. Triana, I.W. Sutapa, Production of the nanoparticles using leaf of Muntingia calabura L. as bioreductor and potential as a blood sugar nanosensor, J. Phys.: Conf. Ser. 1242 (2019) 012004.

DOI: 10.1088/1742-6596/1242/1/012004

Google Scholar

[13] P. Pimpang, S. Choopun, Monodispersity and stability of Gold nanoparticles stabilized by using polyvinyl alcohol, Chiang Mai J. Sci. 38 (2011) 31–38.

Google Scholar

[14] S.A. Farhan, R.M. Dadoosh, A.M.N. Jassim, Evaluation of phytochemical, total phenolic and antioxidant activity of carica papaya seed for its use in biosynthesis of gold nanoparticles, Egypt. J. Chem. 64 (2021) 4301–4310.

DOI: 10.21608/ejchem.2021.63985.3371

Google Scholar

[15] K. Shameli, M. Bin Ahmad Ali, A. Zamanian, P. Sangpour, P. Shabanzadeh, Y. Abdollahi, M. Zargar, Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder, Int. J. Nanomedicine 7 (2012) 5603–5610.

DOI: 10.2147/ijn.s36786

Google Scholar

[16] A. Folorunso, S. Akintelu, A.K. Oyebamiji, S. Ajayi, B. Abiola, I. Abdusalam, A. Morakinyo, Biosynthesis, characterization and antimicrobial activity of gold nanoparticles from leaf extracts of Annona muricata, J. Nanostruct. Chem. 9 (2019) 111–117.

DOI: 10.1007/s40097-019-0301-1

Google Scholar

[17] M.M.H. Khalil, E.H. Ismail, F. El-Magdoub, Biosynthesis of Au nanoparticles using olive leaf extract: 1st Nano updates, Arabian J. Chem. 5 (2012) 431–437.

DOI: 10.1016/j.arabjc.2010.11.011

Google Scholar

[18] R.M. Ganesan, H.G. Prabu, Synthesis of gold nanoparticles using herbal Acorus calamus rhizome extract and coating on cotton fabric for antibacterial and UV blocking applications, Arabian J. Chem. 12 (2019) 2166–2174.

DOI: 10.1016/j.arabjc.2014.12.017

Google Scholar

[19] U. Dippon, S. Pabst, S. Klitzke, Colloidal stabilization of CeO2 nanomaterials with polyacrylic acid, polyvinyl alcohol or natural organic matter, Sci. Total Environ. 645 (2018) 1153–1158.

DOI: 10.1016/j.scitotenv.2018.07.189

Google Scholar