Incorporation of Urea Fertilizer and Activated Carbon in Carboxymethyl Cellulose-Based Bioplastics

Article Preview

Abstract:

The high mobility of urea as a nitrogen nutrient in the soil leads to inefficient absorption by plants. Hence efforts to design a slow-release fertilizer (SRF) are significant. This paper reports the incorporation of urea fertilizer with carbon or zeolite in a bioplastic made of carboxymethyl cellulose as the matrix. The bioplastics were made by mixing the zeolite or activated carbon suspensions into a sodium carboxymethyl cellulose (Na-CMC) gel. Glycerol was then added as a plasticizer. Six variations of bioplastics were prepared, namely CMC-urea 0.5 and 1.0, CMC-urea-zeolite, CMC-urea-zeolite-glycerol, CMC-urea-activated carbon, and CMC-urea-activated carbon-glycerol. The weight ratio of CMC and urea fertilizer was kept constant at 2:1 since the resulted bioplastics showed higher texture transparency and homogeneity than those of bioplastics with a weight ratio of CMC to urea 1:1. The addition of zeolite increased the tensile strength of the bioplastics by about two times. While, the glycerol addition improved the elongation at break. The release of urea from the bioplastics was slower for bioplastics with zeolite than with activated carbon. The composite bioplastics may serve as a slow-release urea for agriculture.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1061)

Pages:

75-80

Citation:

Online since:

May 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Mikula, G. Izydorczyk, D. Skrzypczak, M. Mironiuk, K. Moustakas, A. Witek-Krowiak, K. Chojnacka, Controlled release micronutrient fertilizers for precision agriculture – A review, Sci. Total Environ. 712 (2020) 136365.

DOI: 10.1016/j.scitotenv.2019.136365

Google Scholar

[2] T. Zhou, Y. Wang, S. Huang, Y. Zhao, Synthesis composite hydrogels from inorganic-organic hybrids based on leftover rice for environment-friendly controlled-release urea fertilizers, Sci. Total Environ. 615 (2018) 422–430.

DOI: 10.1016/j.scitotenv.2017.09.084

Google Scholar

[3] L. Wu, M. Liu, R. Liang, Preparation and properties of a double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention, Bioresour. Technol. 99 (2008) 547–554.

DOI: 10.1016/j.biortech.2006.12.027

Google Scholar

[4] R. Gil-Ortiz, M.Á. Naranjo, A. Ruiz-Navarro, M. Caballero-Molada, S. Atares, C. García, O. Vicente, New eco-friendly polymeric-coated urea fertilizers enhanced crop yield in wheat, Agronomy 10 (2020) 438.

DOI: 10.3390/agronomy10030438

Google Scholar

[5] M. Charoenchai, P. Prompinit, W. Kangwansupamonkon, L. Vayachuta, Bio-inspired surface structure for slow-release of urea fertilizer, J. Bionic. Eng. 17 (2020) 335–344.

DOI: 10.1007/s42235-020-0027-2

Google Scholar

[6] B. Ishartono, S. Suyanta, I. Kartini, Effect of zeolite to clay ratios on the formation of zeolite-clay-white cement composite cylinder as an encapsulant of urea fertilizer, Key Eng. Mater. 884 (2021) 196–203.

DOI: 10.4028/www.scientific.net/kem.884.196

Google Scholar

[7] I. Kartini, E.T. Lumbantobing, S. Suyanta, S. Sutarno, R. Adnan, Bioplastic composite of carboxymethyl cellulose/N-P-K fertilizer, Key Eng. Mater. 840 (2020) 156–161.

DOI: 10.4028/www.scientific.net/kem.840.156

Google Scholar

[8] I. Kartini, K.H. Iskandar, C. Chotimah, E.S. Kunarti, R. Rochmadi, Effect of zeolite addition on the properties of bioplastic composites of carboxymethyl cellulose-urea, Mater. Sci. Forum 948 (2019) 175–180.

DOI: 10.4028/www.scientific.net/msf.948.175

Google Scholar

[9] T. Abe, R. Takashima, T. Kamiya, C.P. Foong, K. Numata, D. Aoki, H. Otsuka, Plastics to fertilizers: Chemical recycling of a bio-based polycarbonate as a fertilizer source, Green Chem. 23 (2021) 9030–9037.

DOI: 10.1039/d1gc02327f

Google Scholar

[10] H. Almasi, B. Ghanbarzadeh, A.A. Entezami, Physicochemical properties of starch–CMC–nanoclay biodegradable films, Int. J. Biol. Macromol. 46 (2010) 1–5.

DOI: 10.1016/j.ijbiomac.2009.10.001

Google Scholar

[11] M. Rehakova, S. Čuvanová, M. Dzivak, J. Rimár, Z. Gaval'ova, Agricultural and agrochemical uses of natural zeolite of the clinoptilolite type, Curr. Opin. Solid State Mater. Sci. 8(6) (2004) 397–404.

DOI: 10.1016/j.cossms.2005.04.004

Google Scholar

[12] D. Bhardwaj, M. Sharma, P. Sharma, R. Tomar, Synthesis and surfactant modification of clinoptilolite and montmorillonite for the removal of nitrate and preparation of slow-release nitrogen fertilizer, J. Hazard. Mater. 227-228 (2012) 292–300.

DOI: 10.1016/j.jhazmat.2012.05.058

Google Scholar

[13] R.C. Bansal, M. Goyal, Activated Carbon Adsorption, 1st ed., CRC Press, Boca Raton, (2005).

Google Scholar

[14] R.M.C. Viegas, A.S. Mestre, E. Mesquita, M. Machuqueiro, M.A. Andrade, A.P. Carvalho, M.J. Rosa, Key factors for activated carbon adsorption of pharmaceutical compounds from wastewaters: A multivariate modelling approach, Water 14 (2022) 166.

DOI: 10.3390/w14020166

Google Scholar

[15] M. Manivannan, S. Rajendran, Investigation of inhibitive action of urea-Zn2+ system in the corrosion control of carbon steel in sea water, Int. J. Eng. Sci. Technol. 3 (2011) 8048–8060.

Google Scholar

[16] E. Susilowati, I. Kartini, S.J. Santosa, Triyono, Effect of glycerol on mechanical and physical properties of silver-chitosan nanocomposite films, IOP Conf. Ser.: Mater. Sci. Eng. 107 (2016) 012041.

DOI: 10.1088/1757-899x/107/1/012041

Google Scholar

[17] C.V. Prasad, B.Y. Swamy, H. Sudhakar, T. Sobharani, K. Sudhakar, M.C.S. Subha, K.C. Rao, Preparation and characterization of 4A zeolite-filled mixed matrix membranes for pervaporation dehydration of isopropyl alcohol, J. Appl. Polym. Sci. 121 (2011) 1521–1529.

DOI: 10.1002/app.33688

Google Scholar

[18] A. Rahman, M. Park, S. Park, Current progress on the surface chemical modification of carbonaceous materials, Coatings 9 (2019) 103.

Google Scholar