Sintering Temperature Effects on Photocatalytic Activity of SrTi0.80Mn0.20O3

Article Preview

Abstract:

SStrontium titanate (STO) is well recognized as promising perovskite photocatalytic material. The catalytic characteristics of STO can be improved by modification with Mn metal. In this study, SrTi0.80Mn0.20O3 has been successfully fabricated using coprecipitation technique with varied sintering temperatures of 700°C, 800°C, 900°C, and 1000°C. This study aimed to investigate the effect of sintering temperature on the photocatalytic activity of SrTi0.80Mn0.20O3. The photocatalyst activity of SrTi0.80Mn0.20O3 could be observed by the degradation of Methylene blue (MB) dye. Based on the X-Ray Diffraction (XRD) and Fourier Transform Infra-Red (FTIR) data, the SrTi0.80Mn0.20O3 has been made. The data also showed that the impurities phases have been reduced and eliminated by the higher sintering temperatures. Nevertheless, all varied samples of the SrTi0.80Mn0.20O3 have successfully exhibited their photocatalyst activity by degrading the MB dye under UV light irradiation with irradiation times of 0, 1, 2, 3, 4, 5, and 6 hours. According to the UV-Vis absorption data, the irradiation time could considerably decline the absorption peaks of MB dye in SrTi0.80Mn0.20O3. Besides, the higher sintering temperature did not influence the absorption peaks position but slightly changed their intensity (at the same irradiation time). Furthermore, the higher sintering temperature and longer irradiation time tended to produce higher DR% of up to 66.63%.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1064)

Pages:

109-115

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I.R. Qazi, W.J. Lee, H.C. Lee, M.S. Hassan, O. Yang, Photocatalytic degradation of methylene blue dye under visible light over Cr doped strontium titanate (SrTiO3) nanoparticles, Journal of nanoscience and nanotechnology. 10 (2010) 3430-3434.

DOI: 10.1166/jnn.2010.2326

Google Scholar

[2] Y. Fan, Y. Liu, H. Cui, W. Wang, Q. Shang, X. Shi, G. Cui, B. Tang, Photocatalytic Overall Water Splitting by SrTiO3 with Surface Oxygen Vacancies, Nanomaterials. 10 (2020) 2572.

DOI: 10.3390/nano10122572

Google Scholar

[3] B.L. Phoon, C.W. Lai, J.C. Juan, P.L. Show, G.T. Pan, Recent developments of strontium titanate for photocatalytic water splitting application, International Journal of Hydrogen Energy. 44 (2019) 14316-14340.

DOI: 10.1016/j.ijhydene.2019.01.166

Google Scholar

[4] X. Gao, M. Li, F. Zhou, X. Wang, S. Chen, J. Yu, Flexible zirconium doped strontium titanate nanofibrous membranes with enhanced visible-light photocatalytic performance and antibacterial activities, Journal of Colloid and Interface Science. 600 (2021) 127-137.

DOI: 10.1016/j.jcis.2021.05.005

Google Scholar

[5] U. Sulaeman, S. Yin, T. Sato, Solvothermal synthesis and photocatalytic properties of nitrogen-doped SrTiO3 nanoparticles, Journal of Nanomaterials. (2010).

DOI: 10.1155/2010/629727

Google Scholar

[6] C. Yang, T. Liu, Z. Cheng, H. Gan, J. Chen, Study on Mn-doped SrTiO3 with first principle calculation, Physica B: Condensed Matter. 407 (2012) 844-848.

DOI: 10.1016/j.physb.2011.12.020

Google Scholar

[7] Q.I. Rahman, M. Ahmad, S.K. Misra, M. Lohani, Efficient degradation of methylene blue dye over highly reactive Cu doped strontium titanate (SrTiO3) nanoparticles photocatalyst under visible light, Journal of nanoscience and nanotechnology. 12 (2012) 7181-7186.

DOI: 10.1166/jnn.2012.6494

Google Scholar

[8] H.P. Duong, T. Mashiyama, M. Kobayashi, A. Iwase, A. Kudo, Y. Asakura, ... , H. Kato, Z-scheme water splitting by microspherical Rh-doped SrTiO3 photocatalysts prepared by a spray drying method, Applied Catalysis B: Environmental. 252 (2019) 222-229.

DOI: 10.1016/j.apcatb.2019.04.009

Google Scholar

[9] R. Han, M.A. Melo Jr, Z. Zhao, Z. Wu, F.E. Osterloh, Light intensity dependence of photochemical charge separation in the bivo4/ru-srtio3: rh direct contact tandem photocatalyst for overall water splitting, The Journal of Physical Chemistry C. 124 (2020) 9724-9733.

DOI: 10.1021/acs.jpcc.0c00772.s001

Google Scholar

[10] M.V. Le, N.Q.D. Vo, Q.C. Le, V.A. Tran, T.Q.P. Phan, C.W. Huang, V.H. Nguyen, Manipulating the structure and characterization of sr1− xlaxtio3 nanocubes toward the photodegradation of 2-naphthol under artificial solar light, Catalysts. 11 (2021) 564.

DOI: 10.3390/catal11050564

Google Scholar

[11] H. Mansoor, W.L. Harrigan, K.A. Lehuta, K.R. Kittilstved, Reversible control of the Mn oxidation state in SrTiO3 bulk powders, Frontiers in chemistry. 7 (2019) 353.

DOI: 10.3389/fchem.2019.00353

Google Scholar

[12] T. Xie, Y. Wang, C. Liu, L. Xu, New insights into sensitization mechanism of the Doped Ce (IV) into strontium Titanate, Materials. 11 (2018) 646.

DOI: 10.3390/ma11040646

Google Scholar

[13] G. Wu, P. Li, D. Xu, B. Luo, Y. Hong, W. Shi, C. Liu, Hydrothermal synthesis and visible-light-driven photocatalytic degradation for tetracycline of Mn-doped SrTiO3 nanocubes, Applied Surface Science. 333 (2015) 39-47.

DOI: 10.1016/j.apsusc.2015.02.008

Google Scholar

[14] F. Pellegrino, F. Sordello, L. Mino, M. Prozzi, U. Mansfeld, V.D. Hodoroaba, C. Minero, Polyethylene glycol as shape and size controller for the hydrothermal synthesis of SrTiO3 cubes and polyhedral, Nanomaterials. 10 (2020) 1892.

DOI: 10.3390/nano10091892

Google Scholar

[15] M. Thoif, A. Prasetyo, N. Aini, Sintesis Material Fotokatalis Strontium titanat (SrTiO3) dengan Metode Hidrotermal pada Variasi Suhu, JC-T (Journal Cis-Trans): Jurnal Kimia dan Terapannya. 4 (2020).

DOI: 10.17977/um0260v4i12020p008

Google Scholar

[16] J.H. Roque-Ruiz, J. Meraz-Angel, R. Farias, M. Meléndez-Lira, S.Y. Reyes-López, Sol-gel synthesis of strontium titanate nanofibers by electrospinning, J. Ceram. Sci. Technol. 10 (2019) 29-38.

Google Scholar

[17] L.F. da Silva, O.F. Lopes, V.R. de Mendonça, K.T. Carvalho, E. Longo, C. Ribeiro, V.R. Mastelaro, An understanding of the photocatalytic properties and pollutant degradation mechanism of SrTiO3 nanoparticles, Photochemistry and photobiology. 92 (2016) 371-378.

DOI: 10.1111/php.12586

Google Scholar

[18] H. Wei, J. Cai, Y. Zhang, X. Zhang, E.A. Baranova, J. Cui, ... , Y. Wu, Synthesis of SrTiO3 submicron cubes with simultaneous and competitive photocatalytic activity for H2O splitting and CO2 reduction, RSC Advances. 10 (2020) 42619-42627.

DOI: 10.1039/d0ra08246e

Google Scholar

[19] W. Zhang, F. Bi, X. Sun, H. He, Effect of Sr-Ti molar ratio on strontium titanate prepared by sol-gel method, Asian Journal of Chemistry. 25 (2013) 5311-5314.

DOI: 10.14233/ajchem.2013.14170

Google Scholar

[20] S.I. Suárez-Vázquez, A. Cruz-López, C.E. Molina-Guerrero, A.I. Sánchez-Vázquez, C. Macías-Sotelo, Effect of dopant loading on the structural and catalytic properties of Mn-doped SrTiO3 catalysts for catalytic soot combustion, Catalysts. 8 (2018) 71.

DOI: 10.3390/catal8020071

Google Scholar

[21] E. Padmini, K. Ramachandran, Investigation on versatile behaviour of Cd doped SrTiO3 perovskite structured compounds, Solid State Communications. 302 (2019) 113716.

DOI: 10.1016/j.ssc.2019.113716

Google Scholar

[22] M. Chen, Q. Xiong, Z. Liu, K. Qiu, X. Xiao, Synthesis and photocatalytic activity of Na+ co-doped CaTiO3: Eu3+ photocatalysts for methylene blue degradation, Ceramics International. 46 (2020) 12111-12119.

DOI: 10.1016/j.ceramint.2020.01.256

Google Scholar