[1]
I.R. Qazi, W.J. Lee, H.C. Lee, M.S. Hassan, O. Yang, Photocatalytic degradation of methylene blue dye under visible light over Cr doped strontium titanate (SrTiO3) nanoparticles, Journal of nanoscience and nanotechnology. 10 (2010) 3430-3434.
DOI: 10.1166/jnn.2010.2326
Google Scholar
[2]
Y. Fan, Y. Liu, H. Cui, W. Wang, Q. Shang, X. Shi, G. Cui, B. Tang, Photocatalytic Overall Water Splitting by SrTiO3 with Surface Oxygen Vacancies, Nanomaterials. 10 (2020) 2572.
DOI: 10.3390/nano10122572
Google Scholar
[3]
B.L. Phoon, C.W. Lai, J.C. Juan, P.L. Show, G.T. Pan, Recent developments of strontium titanate for photocatalytic water splitting application, International Journal of Hydrogen Energy. 44 (2019) 14316-14340.
DOI: 10.1016/j.ijhydene.2019.01.166
Google Scholar
[4]
X. Gao, M. Li, F. Zhou, X. Wang, S. Chen, J. Yu, Flexible zirconium doped strontium titanate nanofibrous membranes with enhanced visible-light photocatalytic performance and antibacterial activities, Journal of Colloid and Interface Science. 600 (2021) 127-137.
DOI: 10.1016/j.jcis.2021.05.005
Google Scholar
[5]
U. Sulaeman, S. Yin, T. Sato, Solvothermal synthesis and photocatalytic properties of nitrogen-doped SrTiO3 nanoparticles, Journal of Nanomaterials. (2010).
DOI: 10.1155/2010/629727
Google Scholar
[6]
C. Yang, T. Liu, Z. Cheng, H. Gan, J. Chen, Study on Mn-doped SrTiO3 with first principle calculation, Physica B: Condensed Matter. 407 (2012) 844-848.
DOI: 10.1016/j.physb.2011.12.020
Google Scholar
[7]
Q.I. Rahman, M. Ahmad, S.K. Misra, M. Lohani, Efficient degradation of methylene blue dye over highly reactive Cu doped strontium titanate (SrTiO3) nanoparticles photocatalyst under visible light, Journal of nanoscience and nanotechnology. 12 (2012) 7181-7186.
DOI: 10.1166/jnn.2012.6494
Google Scholar
[8]
H.P. Duong, T. Mashiyama, M. Kobayashi, A. Iwase, A. Kudo, Y. Asakura, ... , H. Kato, Z-scheme water splitting by microspherical Rh-doped SrTiO3 photocatalysts prepared by a spray drying method, Applied Catalysis B: Environmental. 252 (2019) 222-229.
DOI: 10.1016/j.apcatb.2019.04.009
Google Scholar
[9]
R. Han, M.A. Melo Jr, Z. Zhao, Z. Wu, F.E. Osterloh, Light intensity dependence of photochemical charge separation in the bivo4/ru-srtio3: rh direct contact tandem photocatalyst for overall water splitting, The Journal of Physical Chemistry C. 124 (2020) 9724-9733.
DOI: 10.1021/acs.jpcc.0c00772.s001
Google Scholar
[10]
M.V. Le, N.Q.D. Vo, Q.C. Le, V.A. Tran, T.Q.P. Phan, C.W. Huang, V.H. Nguyen, Manipulating the structure and characterization of sr1− xlaxtio3 nanocubes toward the photodegradation of 2-naphthol under artificial solar light, Catalysts. 11 (2021) 564.
DOI: 10.3390/catal11050564
Google Scholar
[11]
H. Mansoor, W.L. Harrigan, K.A. Lehuta, K.R. Kittilstved, Reversible control of the Mn oxidation state in SrTiO3 bulk powders, Frontiers in chemistry. 7 (2019) 353.
DOI: 10.3389/fchem.2019.00353
Google Scholar
[12]
T. Xie, Y. Wang, C. Liu, L. Xu, New insights into sensitization mechanism of the Doped Ce (IV) into strontium Titanate, Materials. 11 (2018) 646.
DOI: 10.3390/ma11040646
Google Scholar
[13]
G. Wu, P. Li, D. Xu, B. Luo, Y. Hong, W. Shi, C. Liu, Hydrothermal synthesis and visible-light-driven photocatalytic degradation for tetracycline of Mn-doped SrTiO3 nanocubes, Applied Surface Science. 333 (2015) 39-47.
DOI: 10.1016/j.apsusc.2015.02.008
Google Scholar
[14]
F. Pellegrino, F. Sordello, L. Mino, M. Prozzi, U. Mansfeld, V.D. Hodoroaba, C. Minero, Polyethylene glycol as shape and size controller for the hydrothermal synthesis of SrTiO3 cubes and polyhedral, Nanomaterials. 10 (2020) 1892.
DOI: 10.3390/nano10091892
Google Scholar
[15]
M. Thoif, A. Prasetyo, N. Aini, Sintesis Material Fotokatalis Strontium titanat (SrTiO3) dengan Metode Hidrotermal pada Variasi Suhu, JC-T (Journal Cis-Trans): Jurnal Kimia dan Terapannya. 4 (2020).
DOI: 10.17977/um0260v4i12020p008
Google Scholar
[16]
J.H. Roque-Ruiz, J. Meraz-Angel, R. Farias, M. Meléndez-Lira, S.Y. Reyes-López, Sol-gel synthesis of strontium titanate nanofibers by electrospinning, J. Ceram. Sci. Technol. 10 (2019) 29-38.
Google Scholar
[17]
L.F. da Silva, O.F. Lopes, V.R. de Mendonça, K.T. Carvalho, E. Longo, C. Ribeiro, V.R. Mastelaro, An understanding of the photocatalytic properties and pollutant degradation mechanism of SrTiO3 nanoparticles, Photochemistry and photobiology. 92 (2016) 371-378.
DOI: 10.1111/php.12586
Google Scholar
[18]
H. Wei, J. Cai, Y. Zhang, X. Zhang, E.A. Baranova, J. Cui, ... , Y. Wu, Synthesis of SrTiO3 submicron cubes with simultaneous and competitive photocatalytic activity for H2O splitting and CO2 reduction, RSC Advances. 10 (2020) 42619-42627.
DOI: 10.1039/d0ra08246e
Google Scholar
[19]
W. Zhang, F. Bi, X. Sun, H. He, Effect of Sr-Ti molar ratio on strontium titanate prepared by sol-gel method, Asian Journal of Chemistry. 25 (2013) 5311-5314.
DOI: 10.14233/ajchem.2013.14170
Google Scholar
[20]
S.I. Suárez-Vázquez, A. Cruz-López, C.E. Molina-Guerrero, A.I. Sánchez-Vázquez, C. Macías-Sotelo, Effect of dopant loading on the structural and catalytic properties of Mn-doped SrTiO3 catalysts for catalytic soot combustion, Catalysts. 8 (2018) 71.
DOI: 10.3390/catal8020071
Google Scholar
[21]
E. Padmini, K. Ramachandran, Investigation on versatile behaviour of Cd doped SrTiO3 perovskite structured compounds, Solid State Communications. 302 (2019) 113716.
DOI: 10.1016/j.ssc.2019.113716
Google Scholar
[22]
M. Chen, Q. Xiong, Z. Liu, K. Qiu, X. Xiao, Synthesis and photocatalytic activity of Na+ co-doped CaTiO3: Eu3+ photocatalysts for methylene blue degradation, Ceramics International. 46 (2020) 12111-12119.
DOI: 10.1016/j.ceramint.2020.01.256
Google Scholar