XRD Analysis of LiFeO2 Formation from Li2CO3-Fe2O3 Mechanically Activated Reagents

Article Preview

Abstract:

The formation of LiFeO2 lithium ferrite from unmilled and milled Fe2O3-Li2CO3 mixture was studied by X-ray powder diffraction (XRD). The ball milling was perform via AGO-2S high-energy planetary ball mill at a rotational speed of 2220 rpm for 60 min. Solid-phase synthesis was carried out by conventional laboratory furnace at 600 °C. Using PowderCell 2.4 software, the structural parameters of the reagents and ferrite obtained from these were determined. According to the XRD data, the crystallite sizes of the milled reagents decreased, while the strains increased. It was found that the synthesized ferrite is characterized by multiphase composition consisting of unreacted initial reagents, α-LiFeO2, γ-LiFeO2 and α-Li0.5Fe2.5O4 phases, the concentration of which depends on the prehistory of the mixture.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1064)

Pages:

129-138

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Barre, M. Catti. Neutron diffraction study of the β' and γ phases of LiFeO2, J. Solid St. Ch., 182 (2009) 2549-2554.

DOI: 10.1016/j.jssc.2009.06.029

Google Scholar

[2] Y.T. Lee, C.S. Yoon, Y.S. Lee, Y.-K. Sun. Synthesis and structural changes of LixFeyOz material prepared by a solid-state method, J. Power Sour. 134 (2004) 88-94.

DOI: 10.1016/j.jpowsour.2004.02.001

Google Scholar

[3] Y.S. Lee, C.S. Yoon, Y.K. Sun, K Kobayakawa, Y. Sato. Synthesis of nano-crystalline LiFeO2 material with advanced battery performance, Elect. Com. 4 (2002) 727-731.

DOI: 10.1016/s1388-2481(02)00436-8

Google Scholar

[4] A.E. Abdel-Ghany, A. Mauger, H. Groult, K. Zaghib, C.M. Julien. Structural properties and electrochemistry of α-LiFeO2, J. Power Sour. 197 (2012) 285-291.

DOI: 10.1016/j.jpowsour.2011.09.054

Google Scholar

[5] A.K. Tangra, G.S. Lotey. Synthesis and investigation of structural, optical, magnetic, and biocompatibility properties of nanoferrites AFeO2, Curr. Appl. Ph. 27 (2021) 103-116.

DOI: 10.1016/j.cap.2021.04.011

Google Scholar

[6] R. Kanno, T. Shirane, Y. Kawamoto, Y. Takeda, M. Takano, M. Ohashi, Y. Yamaguchi. Synthesis, structure, and electrochemical properties of a new lithium iron oxide, LiFeO2, with a corrugated layer structure, J. Electrochem. Soc. 143 (1996) 2435-2442.

DOI: 10.1149/1.1837027

Google Scholar

[7] T. Matsumura, R. Kanno, Y. Inaba, Y. Kawamoto, M. Takano. Synthesis, structure, and electrochemical properties of a new cathode material LiFeO2, with a tunnel structure, J. Electrochem. Soc. 149 (2002) A1509–A1513.

DOI: 10.1149/1.1516769

Google Scholar

[8] Y. Sakurai, H. Arai, S. Okada, J. Yamaki. Low temperature synthesis and electrochemical characterization of LiFeO2 cathodes, J. Power Sour. 68 (1997) 711-715.

DOI: 10.1016/s0378-7753(96)02579-7

Google Scholar

[9] J.R. Dahn, U. Von Sacken, C.A. Michal. Structure and electrochemistry of Li1 ± yNiO2 and a new Li2NiO2 phase with the Ni(OH)2 structure, Sol. St. Ion. 44 (1990) 87-97.

DOI: 10.1016/0167-2738(90)90049-w

Google Scholar

[10] Y. Sakurai, H. Arai, J. Yamaki. Preparation of electrochemically active α-LiFeO2 at low temperature, Solid State Ion. 29 (1998) 113-115.

DOI: 10.1016/s0167-2738(98)00363-4

Google Scholar

[11] M. Tabuchi, S. Tsutsui, C. Masquelier, R. Kanno, K. Ado, I. Matsubara, S. Nasu, H. Kageyama. Effect of Cation Arrangement on the Magnetic Properties of Lithium Ferrites (LiFeO2) Prepared by Hydrothermal Reaction and Post-annealing Method, J. Solid St. Ch., 140 (1998) 159-167.

DOI: 10.1006/jssc.1998.7725

Google Scholar

[12] G.A. El-Shobaky, A.A. Ibrahim. Solid-solid interactions between ferric oxide and lithium carbonate and the thermal stability of the lithium ferrites produced, Thermoch. Acta. 118 (1987) 151-158.

DOI: 10.1016/0040-6031(87)80079-5

Google Scholar

[13] S.K. Rakshit, S.C. Parida, Y.P. Naik, V. Venugopal. Thermodynamic studies on lithium ferrites, J. Solid State Chem. 184 (2011) 1186-1194.

DOI: 10.1016/j.jssc.2011.03.033

Google Scholar

[14] A.P. Surzhikov, A.M. Pritulov, E.N. Lysenko, V.A. Vlasov, E.A. Vasendina, A.V. Malyshev. Analysis of the phase composition and homogeneity of ferrite lithium-substituted powders by the thermomagnetometry method, J. Therm. Anal. Calorim. 112 (2013) 739-745.

DOI: 10.1007/s10973-012-2618-6

Google Scholar

[15] S.S. Teixeira, M.P.F. Grac, L.C. Costa. Dielectric, morphological and structural properties of lithium ferrite powders prepared by solid state method, J. Noncryst. Solids. 358 (2012) 1924-1929.

DOI: 10.1016/j.jnoncrysol.2012.06.003

Google Scholar

[16] B.S. Randhawa, H.S. Dosanjh, N. Kumar. Synthesis of lithium ferrite by precursor and combustion methods: a comparative study, J. Radioanal. Nucl. Chem. 274 (2007) 581-591.

DOI: 10.1007/s10967-006-6924-y

Google Scholar

[17] V. Verma, V. Pandey, R.P. Aloysius, S. Annapoorni, R.K. Kotanala. Comparative study of structural and magnetic properties of nanocrystalline Li0.5Fe2.5O4 prepared by various methods, Phys B. 404 (2009) 2309-2314.

DOI: 10.1016/j.physb.2009.04.034

Google Scholar

[18] G. Aravind, M. Raghasudha, D.M. Ravinder, R. Manivel, S.S. Meena, P. Bhatt. Study of structural and magnetic properties of Li–Ni nanoferrites synthesized by citrate-gel auto combustion method, Ceram. Int. 42 (2016) 2941-2950.

DOI: 10.1016/j.ceramint.2015.10.077

Google Scholar

[19] M. Tabuchi, K. Ado, H. Sakaebe, C. Masquelier, H. Kageyama, O. Nakamura. Preparation of AFeO2 (A = Li, Na) by hydrothermal method, Solid State Ion. 79 (1995) 220-226.

DOI: 10.1016/0167-2738(95)00065-e

Google Scholar

[20] V. Berbenni, G. Bruni, C. Milanese, A. Girella, A. Marini. Synthesis and characterization of LaFeO3 powders prepared by a mixed mechanical/thermal processing route, J. Therm. Anal. Calorim. 133 (2018) 413-419.

DOI: 10.1007/s10973-017-6878-z

Google Scholar

[21] T.T. Parlak, F. Apaydin, K. Yildiz. Formation of SrTiO3 in mechanically activated SrCO3–TiO2 system, J. Therm. Anal. Calorim. 127 (2017) 63-69.

DOI: 10.1007/s10973-016-5385-y

Google Scholar

[22] V. Mihalache. Thermal analysis of ball-milled Fe–14Cr–3 W–0.4Ti–0.25Y2O3 ferritic steel powder, J Therm. Anal. Calorim. 124 (2016) 1179-1192.

DOI: 10.1007/s10973-016-5304-2

Google Scholar

[23] V. Berbenni, A. Marini, P. Matteazzi, R. Ricceri, N.J. Welham. Solid-state formation of lithium ferrites from mechanically activated Li2CO3–Fe2O3 mixtures, J. Eur. Ceram. Soc. 23 (2003) 527-536.

DOI: 10.1016/s0955-2219(02)00150-4

Google Scholar

[24] H.M. Widatallah, C. Johnson, F.J. Berry. The influence of ball milling and subsequent calcination on the formation of LiFeO2, J. Mater. Sci. 37 (2002) 4621-4625.

Google Scholar

[25] M. Kavanlooee, B. Hashemi, H. Maleki-Ghaleh, J. Kavanlooee. Effect of annealing on phase evolution, microstructure, and magnetic properties of nanocrystalline ball-milled LiZnTi ferrite, J. Electron. Mater. 41 (2012) 3082-3086.

DOI: 10.1007/s11664-012-2235-y

Google Scholar

[26] S.H. Gee, Y.K. Hong, M.H. Park, D.W. Erickson, P.J. Lamb. Synthesis of nanosized (Li0.5xFe0.5xZn1-x)Fe2O4 particles and magnetic properties, J. Appl. Phys. 91 (2002) 7586–7588.

Google Scholar

[27] H.M. Widatallah, X.L. Ren, I.A. Al-Omari. The influence of TiO2 polymorph, mechanical milling and subsequent sintering on the formation of Ti-substituted spinel-related Li0.5Fe2.5O4, J. Mater. Sci. 41 (2006) 6333-6338.

DOI: 10.1007/s10853-006-0721-4

Google Scholar

[28] A.P. Surzhikov, E.N. Lysenko, A.V. Malyshev, A.M. Pritulov, O.G. Kazakovskaya Influence of mechanical activation of initial reagents on synthesis of lithium ferrite, Russ. Phys. J. 6 (2012) 672-677.

DOI: 10.1007/s11182-012-9865-7

Google Scholar

[29] A.P. Surzhikov, E.N. Lysenko, V.A. Vlasov, A.V. Malyshev, E.V. Nikolaev. Thermal analysis study of solid-phase synthesis of zinc- and titanium-substituted lithium ferrites from mechanically activated reagents, J. Therm. Anal. Calorim. 122 (2015) 1347-1353.

DOI: 10.1007/s10973-015-4849-9

Google Scholar

[30] E.N. Lysenko, E.V. Nikolaev, V.A. Vlasov, A.P. Surzhikov, Microstructure and reactivity of Fe2O3-Li2CO3-ZnO ferrite system ball-milled in a planetary mill, Thermochim. Acta. 664 (2018) 100-107.

DOI: 10.1016/j.tca.2018.04.015

Google Scholar

[31] E.N. Lysenko, A.P. Surzhikov, E.V. Nikolaev, V.A. Vlasov. Thermal analysis study of LiFeO2 formation from Li2CO3–Fe2O3 mechanically activated reagents, J. Therm. Anal. Calor. 134 (2018) 81-87.

DOI: 10.1007/s10973-018-7113-2

Google Scholar

[32] V. Berbenni, A. Marini, P. Matteazzi, R. Ricceri, N.J. Welham. Solid-state formation of lithium ferrites from mechanically activated Li2CO3–Fe2O3 mixtures, J. Eur. Ceram. Soc. 23 (2003) 527-536.

DOI: 10.1016/s0955-2219(02)00150-4

Google Scholar