Development of Non-Platinum Metal Catalysts for Anion Exchange Membrane Fuel Cells

Article Preview

Abstract:

The development of non-platinum metal catalysts used in anion exchange membrane fuel cells (AEMFCs) has been considered as a key to bring the fuel cell devices to practical applications. This paper presents the achievement in developing non-platinum metal catalysts including bimetallic palladium-nickel nanoparticles attached on Vulcan carbon particles (PdNi/C) and silver nanoparticles supported on multi-walled carbon nanotubes (Ag/MWCNT) employed in the anode and cathode electrodes of AEMFCs, respectively. These catalysts were synthesized by a wet impregnation method. The SEM analysis showed that the nanoparticle sizes of Pd, Ni, and Ag were less than 50 nm. The electrochemical characterizations of the synthesized PdNi/C and Ag/MWCNT were explored by cyclic voltammetry measurements. In addition, the prepared catalyst performance was evaluated using a single anion exchange membrane fuel cell (AEMFC). The measured results showed that the cell performance of a single H2/O2 AEMFC with PdNi/C and Ag/MWCNT in anode and cathode electrodes, respectively, exhibited a peak power density of about 463 mW·cm-1, which was lower about 24.1% than that of the single-cell containing Pt/C (~610 mW·cm-1) at both anode and cathode sides, indicating that the PdNi/C và Ag/MWCNT catalysts can be used to substitute Pt/C in AEMFCs for cost reduction.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1064)

Pages:

139-147

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.-A. Felseghi, E. Carcadea, M.S. Raboaca, C.N. TRUFIN, C. Filote, Hydrogen Fuel Cell Technology for the Sustainable Future of Stationary Applications, Energies, 12 (2019) 4593.

DOI: 10.3390/en12234593

Google Scholar

[2] D. Akinyele, E. Olabode, A. Amole, Review of Fuel Cell Technologies and Applications for Sustainable Microgrid Systems, Inventions, 5 (2020) 42.

DOI: 10.3390/inventions5030042

Google Scholar

[3] E.S. Davydova, S. Mukerjee, F. Jaouen, D.R. Dekel, Electrocatalysts for Hydrogen Oxidation Reaction in Alkaline Electrolytes, ACS Catalysis, 8 (2018) 6665-6690.

DOI: 10.1021/acscatal.8b00689

Google Scholar

[4] H. Osgood, S.V. Devaguptapu, H. Xu, J. Cho, G. Wu, Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media, Nano Today, 11 (2016) 601-625.

DOI: 10.1016/j.nantod.2016.09.001

Google Scholar

[5] M. Chen, L. Wang, H. Yang, S. Zhao, H. Xu, G. Wu, Nanocarbon/oxide composite catalysts for bifunctional oxygen reduction and evolution in reversible alkaline fuel cells: A mini review, Journal of Power Sources, 375 (2018) 277-290.

DOI: 10.1016/j.jpowsour.2017.08.062

Google Scholar

[6] M. Shviro, S. Polani, R.E. Dunin-Borkowski, D. Zitoun, Bifunctional Electrocatalysis on Pd-Ni Core–Shell Nanoparticles for Hydrogen Oxidation Reaction in Alkaline Medium, Advanced Materials Interfaces, 5 (2018) 1701666.

DOI: 10.1002/admi.201701666

Google Scholar

[7] N. Benipal, J. Qi, R.F. McSweeney, C. Liang, W. Li, Electrocatalytic oxidation of meso-erythritol in anion-exchange membrane alkaline fuel cell on PdAg/CNT catalyst, Journal of Power Sources, 375 (2018) 345-350.

DOI: 10.1016/j.jpowsour.2017.06.082

Google Scholar

[8] M. Alesker, M. Page, M. Shviro, Y. Paska, G. Gershinsky, D.R. Dekel, D. Zitoun, Palladium/nickel bifunctional electrocatalyst for hydrogen oxidation reaction in alkaline membrane fuel cell, Journal of Power Sources, 304 (2016) 332-339.

DOI: 10.1016/j.jpowsour.2015.11.026

Google Scholar

[9] Z.X. Liang, T.S. Zhao, J.B. Xu, L.D. Zhu, Mechanism study of the ethanol oxidation reaction on palladium in alkaline media, Electrochimica Acta, 54 (2009) 2203-2208.

DOI: 10.1016/j.electacta.2008.10.034

Google Scholar

[10] L.P.R. Moraes, B.R. Matos, C. Radtke, E.I. Santiago, F.C. Fonseca, S.C. Amico, C.F. Malfatti, Synthesis and performance of palladium-based electrocatalysts in alkaline direct ethanol fuel cell, International Journal of Hydrogen Energy, 41 (2016) 6457-6468.

DOI: 10.1016/j.ijhydene.2016.02.150

Google Scholar

[11] S. Maheswari, P. Sridhar, S. Pitchumani, Carbon-Supported Silver as Cathode Electrocatalyst for Alkaline Polymer Electrolyte Membrane Fuel Cells, Electrocatalysis, 3 (2012) 13-21.

DOI: 10.1007/s12678-011-0071-0

Google Scholar

[12] Y. Wang, Y. Liu, X. Lu, Z. Li, H. Zhang, X. Cui, Y. Zhang, F. Shi, Y. Deng, Silver-molybdate electrocatalysts for oxygen reduction reaction in alkaline media, Electrochemistry Communications, 20 (2012) 171-174.

DOI: 10.1016/j.elecom.2012.05.004

Google Scholar

[13] L. Xin, Z. Zhang, Z. Wang, J. Qi, W. Li, Carbon supported Ag nanoparticles as high performance cathode catalyst for H2/O2 anion exchange membrane fuel cell, Front Chem, 1 (2013).

DOI: 10.3389/fchem.2013.00016

Google Scholar

[14] V.M. Truong, M.-K. Yang, H. Yang, Functionalized Carbon Black Supported Silver (Ag/C) Catalysts in Cathode Electrode for Alkaline Anion Exchange Membrane Fuel Cells, International Journal of Precision Engineering and Manufacturing-Green Technology, 6 (2019) 711-721.

DOI: 10.1007/s40684-019-00123-3

Google Scholar

[15] S. Lu, J. Pan, A. Huang, L. Zhuang, J. Lu, Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts, Proceedings of the National Academy of Sciences, 105 (2008) 20611-20614.

DOI: 10.1073/pnas.0810041106

Google Scholar

[16] Q. Hu, G. Li, J. Pan, L. Tan, J. Lu, L. Zhuang, Alkaline polymer electrolyte fuel cell with Ni-based anode and Co-based cathode, International Journal of Hydrogen Energy, 38 (2013) 16264-16268.

DOI: 10.1016/j.ijhydene.2013.09.125

Google Scholar

[17] S. Kabir, K. Lemire, K. Artyushkova, A. Roy, M. Odgaard, D. Schlueter, A. Oshchepkov, A. Bonnefont, E. Savinova, D.C. Sabarirajan, P. Mandal, E.J. Crumlin, Iryna V. Zenyuk, P. Atanassov, A. Serov, Platinum group metal-free NiMo hydrogen oxidation catalysts: high performance and durability in alkaline exchange membrane fuel cells, Journal of Materials Chemistry A, 5 (2017) 24433-24443.

DOI: 10.1039/c7ta08718g

Google Scholar

[18] A. Roy, M.R. Talarposhti, S.J. Normile, I.V. Zenyuk, V. De Andrade, K. Artyushkova, A. Serov, P. Atanassov, Nickel–copper supported on a carbon black hydrogen oxidation catalyst integrated into an anion-exchange membrane fuel cell, Sustainable Energy & Fuels, 2 (2018) 2268-2275.

DOI: 10.1039/c8se00261d

Google Scholar

[19] V. Men Truong, J. Richard Tolchard, J. Svendby, M. Manikandan, H. A. Miller, S. Sunde, H. Yang, D. R. Dekel, A. Oyarce Barnett, Platinum and Platinum Group Metal-Free Catalysts for Anion Exchange Membrane Fuel Cells, Energies, 13 (2020) 582.

DOI: 10.3390/en13030582

Google Scholar

[20] V.M. Truong, Q.K. Dang, N.B. Duong, HsiharngYang, Study of PdNi Bimetallic Nanoparticles Supported on Carbon Black for Anion Exchange Membrane Fuel Cells, Journal of Technical Education Science, Ho Chi Minh City University of Technology and Education, 59 (2020) 121-129.

Google Scholar

[21] V.M. Truong, N.B. Duong, H. Yang, Comparison of Carbon Supports in Anion Exchange Membrane Fuel Cells, Materials, 13 (2020) 5370.

DOI: 10.3390/ma13235370

Google Scholar

[22] Z. Yan, Z. Hu, C. Chen, H. Meng, P.K. Shen, H. Ji, Y. Meng, Hollow carbon hemispheres supported palladium electrocatalyst at improved performance for alcohol oxidation, Journal of Power Sources, 195 (2010) 7146-7151.

DOI: 10.1016/j.jpowsour.2010.06.014

Google Scholar

[23] E.J. Lim, Y. Kim, S.M. Choi, S. Lee, Y. Noh, W.B. Kim, Binary PdM catalysts (M = Ru, Sn, or Ir) over a reduced graphene oxide support for electro-oxidation of primary alcohols (methanol, ethanol, 1-propanol) under alkaline conditions, Journal of Materials Chemistry A, 3 (2015) 5491-5500.

DOI: 10.1039/c4ta06893a

Google Scholar

[24] M. Wang, W. Liu, C. Huang, Investigation of PdNiO/C catalyst for methanol electrooxidation, International Journal of Hydrogen Energy, 34 (2009) 2758-2764.

DOI: 10.1016/j.ijhydene.2009.01.070

Google Scholar

[25] P. Singh, Y.J. Kim, H. Singh, C. Wang, K.H. Hwang, A. Farh Mel, D.C. Yang, Biosynthesis, characterization, and antimicrobial applications of silver nanoparticles, Int J Nanomedicine, 10 (2015) 2567-77.

DOI: 10.2147/ijn.s72313

Google Scholar

[26] W. Wang, Z. Wang, J. Wang, C.-J. Zhong, C.-J. Liu, Highly Active and Stable Pt–Pd Alloy Catalysts Synthesized by Room-Temperature Electron Reduction for Oxygen Reduction Reaction, Advanced Science, 4 (2017) 1600486.

DOI: 10.1002/advs.201600486

Google Scholar

[27] F. Alimohammadi, M.P. Gashti, A. Shamei, A. Kiumarsi, Deposition of silver nanoparticles on carbon nanotube by chemical reduction method: Evaluation of surface, thermal and optical properties, Superlattices and Microstructures, 52 (2012) 50-62.

DOI: 10.1016/j.spmi.2012.04.015

Google Scholar

[28] J. Guo, A. Hsu, D. Chu, R. Chen, Improving Oxygen Reduction Reaction Activities on Carbon-Supported Ag Nanoparticles in Alkaline Solutions, The Journal of Physical Chemistry C, 114 (2010) 4324-4330.

DOI: 10.1021/jp910790u

Google Scholar

[29] F.P. Lohmann-Richters, B. Abel, Á. Varga, In situ determination of the electrochemically active platinum surface area: key to improvement of solid acid fuel cells, Journal of Materials Chemistry A, 6 (2018) 2700-2707.

DOI: 10.1039/c7ta10110d

Google Scholar

[30] K. Mohanraju, L. Cindrella, Impact of alloying and lattice strain on ORR activity of Pt and Pd based ternary alloys with Fe and Co for proton exchange membrane fuel cell applications, RSC Advances, 4 (2014) 11939-11947.

DOI: 10.1039/c3ra47021k

Google Scholar