[1]
Gupta Aman, Khatirkar Rajesh, Singh Jaiveer. A review of microstructure and texture evolution during plastic deformation and heat treatment of β-Ti alloys[J]. Journal of Alloys and Compounds, 2022, 899:163242.
DOI: 10.1016/j.jallcom.2021.163242
Google Scholar
[2]
Tsuru Tomohito, Itakura Mitsuhiro, Yamaguchi Masatake, Watanabe Chihiro, Miura Hiromi. Dislocation core structure and motion in pure titanium and titanium alloys:A first-principles study[J]. Computational Materials Science, 2022, 203:111081.
DOI: 10.1016/j.commatsci.2021.111081
Google Scholar
[3]
Bartha Kristína, Stráský Josef, Veverková Anna, Veselý Jozef, Janeček Miloš. Observation of the omega phase particles in Ti15Mo alloy by electron microscopy[J]. Materials Letters, 2022, 309:131376.
DOI: 10.1016/j.matlet.2021.131376
Google Scholar
[4]
Xiao J.F., He B.B., Tan C.W.. Effect of martensite on {332} twinning formation in a metastable beta titanium alloy[J]. Journal of Alloys and Compounds, 2022, 895(P2):162598.
DOI: 10.1016/j.jallcom.2021.162598
Google Scholar
[5]
Mcqueen H J. Development of dynamic recrystallization theory[J]. Materials Science & Engineering A, 2004, 387:203-208.
Google Scholar
[6]
Sakai T, Belyakov A, Kaibyshev R, et al. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions[J]. Progress in Materials Science, 2014, 60(1):130-207.
DOI: 10.1016/j.pmatsci.2013.09.002
Google Scholar
[7]
Li Changmin, Huang Liang, Zhao Mingjie, Guo Shiqi, Li Jianjun. Hot deformation behavior and mechanism of a new metastable β titanium alloy Ti-6Cr-5Mo-5V-4Al in single phase region[J]. Materials Science & Engineering A, 2021, 814:141231.
DOI: 10.1016/j.msea.2021.141231
Google Scholar
[8]
Gu B., Chekhonin P., Xin S.W., Liu G.Q., Ma C.L., Zhou L., Skrotzki W.. Effect of temperature and strain rate on the deformation behavior of Ti5321 during hot-compression[J]. Journal of Alloys and Compounds, 2021, 876:159938.
DOI: 10.1016/j.jallcom.2021.159938
Google Scholar
[9]
Zheng Y, Williams R, Sosa J M, et al. The role of the ω phase on the non-classical precipitation of the α phase in metastable β-titanium alloys[J]. Scripta Materialia, 2016, 111(1):81-84.
DOI: 10.1016/j.scriptamat.2015.08.019
Google Scholar
[10]
Dong R, Li J, Kou H, et al. Precipitation behavior of α phase during aging treatment in a β-quenched Ti-7333[J]. Materials Characterization, 2018:275-280.
DOI: 10.1016/j.matchar.2018.04.008
Google Scholar
[11]
Zhang Y., Xiang S., Tan Y.B., Ji X.M.. Study on ω-assisted α nucleation behavior of metastable β-Ti alloys from phase transformation mechanism[J]. Journal of Alloys and Compounds, 2022, 890:161686.
DOI: 10.1016/j.jallcom.2021.161686
Google Scholar
[12]
Sadeghpour S, Abbasi S M, Morakabati M, et al. Correlation between alpha phase morphology and tensile properties of a new beta titanium alloy[J]. Materials and Design, 2017, 121:24-35.
DOI: 10.1016/j.matdes.2017.02.043
Google Scholar
[13]
Qu F S, Zhou Y H, Zhang L Y, et al. Research on hot deformation behavior of Ti-5Al-5Mo-5V-1Cr-1Fe alloy[J]. Materials & Design, 2015, 69:153-162.
DOI: 10.1016/j.matdes.2014.12.021
Google Scholar
[14]
Foltz J W, Welk B, Collins P C, et al. Formation of Grain Boundary α in β Ti Alloys: Its Role in Deformation and Fracture Behavior of These Alloys[J]. Metallurgical and Materials Transactions A, 2011, 42(3):645-650.
DOI: 10.1007/s11661-010-0322-3
Google Scholar
[15]
Bga B, Pc C, Swx D, et al. Microstructure and texture development during hot-compression of Ti5321[J]. Materials Characterization, 2021, 179:111297.
DOI: 10.1016/j.matchar.2021.111297
Google Scholar