[1]
Wohlers T. and Gornet T. (2014) History of additive manufacturing. Wohlers Report. https://wohlersassociates.com/history2014.pdf, 20.06.2020/.
Google Scholar
[2]
Wong K.V. and Hernandez A. (2012) A review of additive manufacturing. International Scholarly Reseach Network Mechanical Engineering. 2012.
Google Scholar
[3]
Murr L.E., Martinez E., Amato K.N., Gaytan S.M., Hernandez J., Ramirez D.A., Shindo P.W., Medina F. and Wicker R.B. (2012) Fabrication of Metal and Alloy Components by Additive Manufacturing: Examples of 3D Materials Science. Journal of Materials Research and Technology. 1(1), 42-54. https://doi.org/10.1016/S2238-7854(12)70009-1.
DOI: 10.1016/s2238-7854(12)70009-1
Google Scholar
[4]
Dovbysh V.М., Zabednov P.V. and Zlenko М.А. (2014) Additivnye tekhnologii i izdeliia iz metalla [Additive technologies and metal products]. Bibliotechka liteishchika – Caster's Library. 9, 14-71. (In Russian).
Google Scholar
[5]
Zhukov V.V., Grigorenko G.М. and Shapovalov V.А. (2016) Additivnoe proizvodstvo metallicheskikh izdelii (obzor) [Additive manufacturing of metal products (overview)]. Avtomaticheskaia svarka – Automatic welding. 5-6, 148-153. (In Russian).
DOI: 10.15407/as2016.06.24
Google Scholar
[6]
Korzhik V.N., Khaskin V.Yu., Tkachuk V.I., Peleshenko S.I., Korotenko V., Babich А.А. (2016) Trekhmernaia pechat' metallicheskikh ob"emnykh izdelii slozhnoi formy na osnove svarochnykh plazmenno-dugovykh tekhnologii [Three-dimensional printing of metal volumetric products of complex shape based on welding plasma-arc technologies]. Avtomaticheskaia svarka – Automatic welding. 5-6, 127. (In Russian).
DOI: 10.15407/tpwj2016.06.20
Google Scholar
[7]
Gu D., Meiners, W., Wissenbach K., and Poprawe R. (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms. International Materials Reviews, 57, 133 - 164.
DOI: 10.1179/1743280411y.0000000014
Google Scholar
[8]
Sing S.L., An J., Yeong W.Y. and Wiria F.E. (2016) Laser and electron‐beam powder‐bed additive manufacturing of metallic implants: A review on processes, materials and designs. Journal of Оrthopaedic research: official publication of the Orthopaedic Research Society. 34(3) 369-385. https://doi.org/10.1002/jor.23075.
DOI: 10.1002/jor.23075
Google Scholar
[9]
Körner C. (2016) Additive manufacturing of metallic components by selective electron beam melting-a review. International Materials Reviews. 61(5), 361–377. https://doi.org/10.1080/09506608.2016.1176289.
DOI: 10.1080/09506608.2016.1176289
Google Scholar
[10]
Frazier W.E. (2014) Metal Additive Manufacturing: A Review. J. of Materi Eng and Perform 23, 1917–1928. https://doi.org/10.1007/s11665-014-0958-z.
Google Scholar
[11]
Brandl E., Michailov V., Viehweger B. and Leyens C. (2011) Deposition of Ti–6Al–4V using laser and wire, part I: Microstructural properties of single beads. Surface and Coatings Technology. 206 (6), 1120-1129, https://doi.org/10.1016/j.surfcoat.2011.07.095.
DOI: 10.1016/j.surfcoat.2011.07.095
Google Scholar
[12]
Ding D.H., Pan Z.X., Cuiuri D. and Li H.J. (2015) Wire-feed additive manufacturing of metal components: technologies, developments and future interests. International Journal of Advanced Manufacturing Technology. 81(1-4) 465-481.
DOI: 10.1007/s00170-015-7077-3
Google Scholar
[13]
Martina F., Mehnen J., Williams S. W., Colegrove P. and Wang F. (2012) Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti–6Al–4V. Journal of Materials Processing Technology. 212(6), 1377-1386, https://doi.org/10.1016/j.jmatprotec.2012.02.002.
DOI: 10.1016/j.jmatprotec.2012.02.002
Google Scholar
[14]
Garff K.F., Short M. and Norfolk M. (2010) Very high power ultrasonic additive manufacturing (vhpuam) for advanced materials. Proceedings of the Solid Freeform Fabrication Simposium, Austin,USA. pp.82-89.
Google Scholar
[15]
Shen, Q., Kong, X., Chen, X. Fabrication of bulk Al-Co-Cr-Fe-Ni high-entropy alloy using combined cable wire arc additive manufacturing (CCW-AAM): Microstructure and mechanical properties (2021) Journal of Materials Science and Technology, 74, pp.136-142.
DOI: 10.1016/j.jmst.2020.10.037
Google Scholar
[16]
Gu J.L., Ding J.L., Williams S.W., Gu H.M., Bai J., Zhai Y.C. and Ma P.H. (2016) The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al-6.3Cu alloy. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing. 651, 18-26.
DOI: 10.1016/j.msea.2015.10.101
Google Scholar
[17]
Dickens P.M., Pridham M.S., Cobb R.C., Gibson I. and Dixon G. (1992) Rapid prototypiring using 3-D welding. Proceedings of the Solid Freeform Fabrication Symposium. Austin, USA, p.280.
Google Scholar
[18]
Spencer J.D., Dickens P.M. and Wykes C.M. (1998) Rapid prototyping of metal parts by three-dimensional welding. Proceedings of The Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture. 175-182.
DOI: 10.1243/0954405981515590
Google Scholar
[19]
Ribero A.F. and Norrish J. (1996) Rapid prototyping process using metal directly. Solid Freeform Fabrication Proceedings. 249-256.
Google Scholar
[20]
Kazanas P., Deherkar P., Almeida P., Lockett H. and Williams S. (2012) Fabrication of geometrical features using wire and arc additive manufacture. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 226(6) 1042-1051.
DOI: 10.1177/0954405412437126
Google Scholar
[21]
Xiong J., Zhang G.J. and Zhang W.H. (2015) Forming appearance analysis in multi-layer single-pass GMAW-based additive manufacturing. International Journal of Advanced Manufacturing Technology, 80(9), 1767-1776.
DOI: 10.1007/s00170-015-7112-4
Google Scholar
[22]
Sarrafi, R. & Kovacevic, Radovan. (2010). Cathodic cleaning of oxides from aluminum surface by variable-polarity arc. Welding Journal. 89. 1S-10S.
Google Scholar
[23]
Xiong J. and Zhang G.J. (2014) Adaptive control of deposited height in GMAW-based layer additive manufacturing. Journal of Materials Processing Technology. 214(4) 962-968.
DOI: 10.1016/j.jmatprotec.2013.11.014
Google Scholar
[24]
Xiong J. and Zhang G. J. (2013) Online measurement of bead geometry in GMAW-based additive manufacturing using passive vision. Measurement Science and Technology. 24(11), 5103.
DOI: 10.1088/0957-0233/24/11/115103
Google Scholar
[25]
Xiong J., Zhang G., Hu J. and Li Y. (2013) Forecasting process parameters for GMAW-based rapid manufacturing using closed-loop iteration based on neural network. International Journal of Advanced Manufacturing Technology. 69(1-4), 743.
DOI: 10.1007/s00170-013-5038-2
Google Scholar
[26]
Xiong J., Zhang G., Hu J. and Wu L. (2014) Bead geometry prediction for robotic GMAW-based rapid manufacturing through a neural network and a second-order regression analysis. Journal of Intelligent Manufacturing. 25, 157-162.
DOI: 10.1007/s10845-012-0682-1
Google Scholar
[27]
Yang D.Q., He C.J. and Zhang G.J. (2016) Forming characteristics of thin-wall steel parts by double electrode GMAW based additive manufacturing. Journal of Materials Processing Technology. 227, 153-160. https://doi.org/10.1016/j.jmatprotec.2015.08.021.
DOI: 10.1016/j.jmatprotec.2015.08.021
Google Scholar
[28]
Manongharan G., Yelamanchi B., Aman R. and Mahbooba Z. (2016) Experimental Study of Disruption of Columnar Grains During Rapid Solidification in Additive Manufacturing, JOM. 68, 842-849. https://doi.org/10.1007/s11837-015-1800-2.
DOI: 10.1007/s11837-015-1800-2
Google Scholar
[29]
Bermingham M.J., Kent D., Zhan H., StJohn D.H. and Dargusch M.S. (2015) Controlling the microstructure and properties of wire arc additive manufactured Ti-6Al-4V with trace boron additions. Acta Materialia. 91, 289-303. https://doi.org/10.1016/j.actamat.2015.03.035.
DOI: 10.1016/j.actamat.2015.03.035
Google Scholar
[30]
Todaro, C.J., Easton, M.A., Qiu, D., Zhang, D., Bermingham, M.J., Lui, E.W., Brandt, M., (...), Qian, M. Grain structure control during metal 3D printing by high-intensity ultrasound (2020) Nature Communications, 11 (1), art. no. 142.,.
DOI: 10.1038/s41467-019-13874-z
Google Scholar
[31]
Wang F.D., Williams S. and Rush M. (2011) Morphology investigation on direct current pulsed gas tungsten arc welded additive layer manufactured Ti6Al4V alloy. International Journal of Advanced Manufacturing Technology. 57(5-8) 597-603.
DOI: 10.1007/s00170-011-3299-1
Google Scholar
[32]
Cong B.Q. and Ding J.L. (2014) Influence of CMT Process on Porosity of Wire Arc Additive Manufactured Al-Cu Alloy. Xiyou Jinshu Cailiao Yu Gongcheng. Rare Metal Materials and Engineering. 43(12), 3149-3153.
Google Scholar
[33]
Cong B.Q., Ding J.L. and Williams S. (2014) Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3%Cu alloy. International Journal of Advanced Manufacturing Technology. 76(9-12), 1593-1606.
DOI: 10.1007/s00170-014-6346-x
Google Scholar
[34]
Abe T. and Sasahara H. (2016) Dissimilar metal deposition with a stainless steel and nickel-based alloy using wire and arc-based additive manufacturing. Precision Engineering- Journal of the International Societies for Precision Engineering and Nanotechnology. 45, 387-395. https://doi.org/10.1016/j.precisioneng.2016.03.016.
DOI: 10.1016/j.precisioneng.2016.03.016
Google Scholar
[35]
Liu L.M., Zhuang Z.L., Liu F. and Zhu M.L., (2013) Additive manufacturing of steel-bronze bimetal by shaped metal deposition: interface characteristics and tensile properties. International Journal of Advanced Manufacturing Technology. 69, (9-12). 2131.
DOI: 10.1007/s00170-013-5191-7
Google Scholar
[36]
Ding D.-H., Pan Z.-X., Cuiuri D. and Li H.-J. (2014) Int. Conf. on Robotic Welding, Intelligence and Automation RWIA 2014: Robotic Welding, Intelligence and Automation. Part of the Advances in Intelligent Systems and Computing book series (AISC).11p.,.
DOI: 10.1007/978-3-319-18997-0_1
Google Scholar
[37]
Ding D.-H., Pan Z.-X., Cuiuri D. and Li H.-J. (2015) A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM). Robotics and Computer- Integrated Manufacturing. 31, 101-110. https://doi.org/10.1016/j.rcim.2014.08.008.
DOI: 10.1016/j.rcim.2014.08.008
Google Scholar
[38]
Ding D.-H., Pan Z.-X., Cuiuri D., Li H.-J., van Duin S. and Larkin N. (2016a) Bead modelling and implementation of adaptive MAT path in wire and arc additive manufacturing. Robotics and Computer-Integrated Manufacturing. 39, 32-42.
DOI: 10.1016/j.rcim.2015.12.004
Google Scholar
[39]
Ding D.-H., Shen C., Pan Z.-X., Cuiuri D., Li H.-J., Larkin N. and van Duin S. (2016b) Towards an automated robotic arc-welding-based additive manufacturing system from CAD to finished part. Computer-Aided Design. 73, 66-75.
DOI: 10.1016/j.cad.2015.12.003
Google Scholar
[40]
Ding J., Colegrove P., Mehnen J., Ganguly S., Almeida P. M.S., Wang F. and Williams S. (2011) Thermo-mechanical analysis of Wire and Arc Additive Layer Manufacturing process on large multi-layer parts. Computational Materials Science. 50(12) 3315-3322. https://doi.org/10.1016/j.commatsci.2011.06.023.
DOI: 10.1016/j.commatsci.2011.06.023
Google Scholar
[41]
Kuznetsov M.A., Zernin E.A., Krampit M.A., Danilov V.I. and Shlyakhova G.V. (2019). Structural and chemical analysis of 3D printed metal products. International Journal of Advanced Science and Technology, 28(15), 699 - 709. Retrieved from https://sersc.org/journals/index.php/IJAST/article/view/(1916).
Google Scholar
[42]
Kuznetsov M.A., Danilov V.I., Krampit M.A., Chinakhov D.A., Slobodyan M.S. Mechanical and tribological properties of a metal wall grown by an electric arc method in an atmosphere of shielding gas. Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) = Metal Working and Material Science, 2020, vol. 22, no. 3, p.18–32.
DOI: 10.17212/1994-6309-2020-22.3-18-32
Google Scholar