Research of Drop Formation during Electric Arc Surfacing with the Use of Mechanical Control Impacts on the Electrode

Article Preview

Abstract:

Investigations of the influence of the parameters of mechanical effects on the temperature and mass of electrode metal droplets during electric arc surfacing with electrode materials of various chemical composition and type have been carried out. The main regularities of the process of droplet transfer during melting of a strip electrode with the introduction of control mechanical impacts have been established. The optimal range of the oscillation frequency of the strip electrode end is 40 ÷ 80 Hz, in which the average droplet diameter decreases to 1.3 ÷ 1.5 mm, and the mass to 0.08 ÷ 0.1 g. As a result of the research, it was found that, during electric arc surfacing with a strip electrode, changing the parameters of mechanical control impacts on the strip end allows not only to control the drop transfer frequency, but also to reduce the size and temperature of the electrode metal droplets, ensuring a decrease in heat input into the base metal and the formation of a favorable structure of the deposited weld metal.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1064)

Pages:

201-210

Citation:

Online since:

June 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. K. Pohodnya Metod issledovaniya protsessa plavleniya i perenosa elektrodnogo metalla pri svarke. Avtomaticheskaya svarka 2 (1964) 1 – 10.

Google Scholar

[2] Metallurgija dugovoj svarki. Processy v duge i plavlenie jelektrodov / I.K. Pohodnja, V.N. Gorpenjuk, S.S. Milichenko i dr. – Kiev: Naukova dumka, 1990. – 224 s.

Google Scholar

[3] F. Wang, W. K. Hou, S. J. Hu et al. Modelling and analysis of metal transfer in gas metal arc welding. J. Phys. D: Applied Physics. 36 (2003) 1–19.

Google Scholar

[4] P.F. Mendez, G. Goett, S. D. Guest High Speed Video of Metal Transfer in Submerged Arc Welding. International Institute of Welding. Seoul. Doc. XII-2196-14 (2014).

Google Scholar

[5] V.A. Sudnik, V.A. Erofeev, A.V. Maslennikov, R.V. Tsvelev. Matematicheskoe modelirovanie formirovaniya svarochnoy vannyi pri dugovoy svarke pod flyusom i analiz protsessa perenosa metalla. Izvestiya TulGU. Tehnicheskie nauki. 6(2) (2015) 21–31.

Google Scholar

[6] O. Semenov, V. Demchenko, I. Krivtsun et al. A dynamic model of droplet formation in GMA welding. Modelling and Simulation in Materials Science and Engineering 20(4) (2012) 045003.

DOI: 10.1088/0965-0393/20/4/045003

Google Scholar

[7] I.V. Pavlov, A.O. Kotlubey. Raschet temperaturyi nagreva elektrodnyih kapel. Visnik PDTU. 16 (2006) 1– 5.

Google Scholar

[8] V. A. Lebedev. Opredelenie ob'yoma perenosimoy kapli elektrodnogo metalla v usloviyah kolebaniy vannyi i elektroda pri dugovoy mehanizirovannoy svarke. Novi materiali i tehnologiyi v metalurgiyi ta mashinobuduvanni. 2 (2017) 95 – 99.

Google Scholar

[9] V.P. Ivanov, E.V. Lavrova, D.P. Il'yaschenko, E.V. Verkhoturova, Modelling of fusion zone formation in shielded metal arc welding, Structural integrity and life. 3 (2020) 281–284.

Google Scholar

[10] V. Ivanov, E. Lavrova, V. Burlaka, V. Duhanets, Calculation of the penetration zone geometric parameters at cladding with a strip electrode. Eastern-European Journal of Enterprise Technologies. 6/5 (2019) 57-62.

DOI: 10.15587/1729-4061.2019.187718

Google Scholar

[11] V.A. Lebedev, T.G. Solomichuk, S.V. Novykov, Study of a Welding Harmonic Oscillation influence on the Welded Metal Hardness and Weld Bead Width. Journal of Еngineering Sciences. 6 (2019) 16–21.

Google Scholar

[12] B.E. Paton, V.A. Lebedev, Ya.I. Mikitin. Sposob kombinirovannogo upravleniya protsessom perenosa elektrodnogo metalla pri mehanizirovannoy dugovoy svarke. Svarochnoe proizvodstvo. 8 (2006) 27–32.

Google Scholar

[13] D.P. Ilyaschenko. Metodika rascheta ob'ema kapli rasplavlennogo elektrodnogo metalla MMA. Mezhdunarodnyiy zhurnal prikladnyih i fundamentalnyih issledovaniy. 9 (2015) 235–237.

Google Scholar

[14] I.V. Lendel, S.Yu. Maksimov, V.A. Lebedev, O.A. Kozyirko. Vliyanie impulsnoy podachi elektrodnoy provoloki na formirovanie i iznosostoykost naplavlennogo valika, a takzhe poteri elektrodnogo metalla pri dugovoy naplavke v CO2. Avtomaticheskaya svarka. 5-6 (2015) 46–48.

Google Scholar

[15] V.P. Ivanov, E.V. Lavrova, Improving the efficiency of strip cladding by the control of electrode metal transfer, Applied Mechanics and Materials. 682 (2014) 266-269.

DOI: 10.4028/www.scientific.net/amm.682.266

Google Scholar

[16] E. Lavrova, V. Ivanov. Controlling the depth of penetration in the case of surfacing with a strip electrode at an angle to the generatrix. Materials Science Forum. 938 (2018) 27-32.

DOI: 10.4028/www.scientific.net/msf.938.27

Google Scholar

[17] V.P. Ivanov, N.A. Makarenko, E.V. Lavrova, M.V. Ahieieva. Electric arc deposition of an anticorrosive layer with two strip electrodes. Solid State Phenomena. 303 (2020) 39-46.

DOI: 10.4028/www.scientific.net/ssp.303.39

Google Scholar

[18] L.K. Leschinskiy. Osobennosti perenosa elektrodnogo metalla i protsessa legirovaniya pri naplavke lentoy. Svarochnoe proizvodstvo. 1 (1969) 10 - 11.

Google Scholar

[19] B.I. Nosovskiy, A.I. Kovalevskiy. Razrabotka rezonansnogo preobrazovatelya elektricheskih kolebaniy v mehanicheskie dlya prinuditelnogo perenosa elektrodnogo metalla pri svarke v srede uglekislogo gaza. Vestnik PGTU. 24 (2012) 206-210.

Google Scholar