[1]
J.T. de Giffoni de Carvalho, D. da Silva Baldivia, D.F. Leite, L.C.A. de Araújo, P.P. de Toledo Espindola, K.A. Antunes, P.S. Rocha, K. Dos Santos, E.L. de Picoli Souza, Medicinal plants from Brazilian cerrado: Antioxidant and anticancer potential and protection against chemotherapy toxicity, Oxid. Med. Cell. Longev. (2019) 1-16.
DOI: 10.1155/2019/3685264
Google Scholar
[2]
D. Elkhalifa, A.B. Siddique, M. Qusa, F.S. Cyprian, K. El Sayed, F. Alali, A.-E. Al Moustafa, A. Khalil, Design, synthesis, and validation of novel nitrogen-based chalcone analogs against triple-negative breast cancer, Eur. J. Med. Chem. 187 (2020) 111954.
DOI: 10.1016/j.ejmech.2019.111954
Google Scholar
[3]
D.A. Dindar, G. Albayrak, A. Ozet, The importance of cancer stem cells in gastrointestinal cancers, Crit. Rev. Oncog. 24, 1 (2019) 55-59.
DOI: 10.1615/critrevoncog.2018029633
Google Scholar
[4]
P. Singh, A. Kumar, V. Anand, Recent developments in biological activities of chalcones: a mini review, Eur. J. Med. Chem. 85 (2014) 758-777.
DOI: 10.1016/j.ejmech.2014.08.033
Google Scholar
[5]
S. Sapra, K. Sharma, Y. Dhar, K. Bhalla, Chalconoid derived heterocycles as potent bioactive molecules: a review, Chem. Sci. J. 7 (2016) 1000129.
Google Scholar
[6]
C. Zhuang, W. Zhang, C. Sheng, W. Zhang, C. Xing, Z. Miao, Chalcone: a privileged structure in medicinal chemistry, Chem. Rev. 117, 12 (2017) 7762-7810.
DOI: 10.1021/acs.chemrev.7b00020
Google Scholar
[7]
Z. Hosseinzadeh, A. Ramazani, N. Razzaghi-Asl, Anti-cancer nitrogen-containing heterocyclic compounds, Curr. Org. Chem. 22, 23 (2018) 2256-2279.
DOI: 10.2174/1385272822666181008142138
Google Scholar
[8]
N. Kerru, L. Gummidi, S. Maddila, K.K. Gangu, S.B. Jonnalagadda, A review on recent advances in nitrogen-containing molecules and their biological applications, Molecules, 25, 8 (2020) (1909).
DOI: 10.3390/molecules25081909
Google Scholar
[9]
H. Irannejad, Nitrogen-rich heterocycles as a privileged fragment in lead discovery, Med. Anal. Chem. Int. J. 2 (2018) 1-6.
DOI: 10.23880/macij-16000125
Google Scholar
[10]
B. Sever, M.D. Altıntop, H.K. Gencer, H.A. Kapkac, O. Atli, M. Baysal, A. Ozdemir, Synthesis of new thiazolyl-pyrazoline derivatives and evaluation of their antimicrobial, cytotoxic and genotoxic effects, Lett. Drug Des. Discov. 15, 7 (2018) 744-756.
DOI: 10.2174/1570180814666170925152902
Google Scholar
[11]
V. Abbot, P. Sharma, S. Dhiman, M.N. Noolvi, H.M. Patel, V. Bhardwaj, Small hybrid heteroaromatics: resourceful biological tools in cancer research, RSC Adv. 7 (2017) 28313.
DOI: 10.1039/c6ra24662a
Google Scholar
[12]
M. de Oliveira Pedrosa, J. de Oliveira Viana, R.O. Moura, R.M.D. da Cruz, Hybrid compounds as direct multitarget ligands: A review, Curr. Top. Med. Chem. 16, 999 (2016) 1.
DOI: 10.2174/1568026616666160927160620
Google Scholar
[13]
X.-Y. Meng, H.-X. Zhang, M. Mezei, M. Cui, Molecular docking: a powerful approach for structure-based drug discovery, Curr. Comput. Aided Drug Des. 7, 2 (2011) 146-157.
DOI: 10.2174/157340911795677602
Google Scholar
[14]
R.F. de Freitas, M. Schapira, A systematic analysis of atomic protein–ligand interactions in the PDB, Med. Chem. Comm. 8, 10 (2017) 1970-1981.
DOI: 10.1039/c7md00381a
Google Scholar
[15]
A.M. Dar, S. Mir, Molecular docking: approaches, types, applications and basic challenges, J. Anal. Bioanal. Tech. 8, 2 (2017) 1-3.
DOI: 10.4172/2155-9872.1000356
Google Scholar
[16]
X. Du, Y. Li, Y.-L. Xia, S.-M. Ai, J. Liang, P. Sang, X.-L. Ji, S.-Q. Liu, Insights into protein–ligand interactions: mechanisms, models, and methods, Int. J. Mol. Sci. 17, 2 (2016) 144.
DOI: 10.3390/ijms17020144
Google Scholar
[17]
H. Hua, H. Zhang, Q. Kong, Y. Jiang, Mechanisms for estrogen receptor expression in human cancer, Exp. Hematol. Oncol. 7, 1 (2018) 1-11.
DOI: 10.1186/s40164-018-0116-7
Google Scholar
[18]
M. Livezey, J.E. Kim, D.J. Shapiro, A new role for estrogen receptor α in cell proliferation and cancer: Activating the anticipatory unfolded protein response. Front. Endocrinol. 9 (2018) 325.
DOI: 10.3389/fendo.2018.00325
Google Scholar
[19]
M. Chang, Tamoxifen resistance in breast cancer, Biomol Ther (Seoul). 20, 3 (2012) 256-267.
Google Scholar
[20]
C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev. 64 (2012) 4-17.
DOI: 10.1016/j.addr.2012.09.019
Google Scholar
[21]
Y.K. Bosken, T. Cholko, Y.-C. Lou, K.-P. Wu, C.-E.A. Chang, Insights into dynamics of inhibitor and ubiquitin-like protein binding in SARS-CoV-2 papain-like protease, Front. Mol. Biosci. 7 (2020) 174.
DOI: 10.3389/fmolb.2020.00174
Google Scholar
[22]
J. Shawon, A. Mahmud Khan, I. Shahriar, M.A. Halim, Improving the binding affinity and interaction of 5-pentyl-2-phenoxyphenol against Mycobacterium enoyl ACP reductase by computational approach, Inform. Med. Unlocked. 23 (2021) 100528.
DOI: 10.1016/j.imu.2021.100528
Google Scholar