[1]
A. F. Ledesma, A. T. Cruz, L. Bucioc, A. M. Wintergerstd , J. A. Rodriguez-Chaveze , Y. A. M. Vargasc, J. A. A. Alatorre, H products and bioactivity of an experimental MTA-like cement modified with wollastonite and bioactive glass, Ceram. Int. 46 (2020) 15963–15971.
DOI: 10.1016/j.ceramint.2020.03.146
Google Scholar
[2]
S. Asgary and S. Ehsani, MTA resorption and periradicular healing in an open-apex incisor: A case report, Saudi Dent. J. (2012) 55–59.
DOI: 10.1016/j.sdentj.2011.08.001
Google Scholar
[3]
Y. Guven, E. B. Tuna, M. E. Dincol, and O. Aktoren, X-ray diffraction analysis of MTA-plus, MTA-angelus and diaroot bioaggregate, Eur. J. Dent. 8 (2014) 211–215.
DOI: 10.4103/2278-344x.130603
Google Scholar
[4]
N. A. Taha and S. Z. Abdulkhader, Full pulpotomy with biodentine in symptomatic young permanent teeth with carious exposure, J. Endod. 44 (2018) 932–937.
DOI: 10.1016/j.joen.2018.03.003
Google Scholar
[5]
E. Altundasar and B. Demir, Management of a perforating internal resorptive defect with mineral trioxide aggregate: a case report, J. Endod. 35 (2009) 1441–1444.
DOI: 10.1016/j.joen.2009.06.017
Google Scholar
[6]
M. Akbari, S. M. Zebarjad, B. Nategh, and A. Rouhani, Effect of nano silica on setting time and physical properties of mineral trioxide aggregate, J. Endod. 39 (2013) 1448–1451.
DOI: 10.1016/j.joen.2013.06.035
Google Scholar
[7]
W. H. Wang, C. Y. Wang, Y. C. Shyu, C. M. Liu, F. H. Lin, and C. P. Lin, Compositional characteristics and hydration behavior of mineral trioxide aggregates, J. Dent. Sci. 5 (2010) 53–59.
DOI: 10.1016/s1991-7902(10)60009-8
Google Scholar
[8]
M. Torabinejad, C. U. Hong, S. J. Lee, M. Monsef, and T. R. Pitt Ford, Investigation of mineral trioxide aggregate for root-end filling in dogs, J. Endod. 21 (1995) 603–608.
DOI: 10.1016/s0099-2399(06)81112-x
Google Scholar
[9]
A. Boonmee, P. Sabsiriroht, and K. Jarukumjorn, Preparation and characterization of rice husk ash for using as a filler in natural rubber, Mater. Today Proc. 17 (2019) 2097–2103.
DOI: 10.1016/j.matpr.2019.06.259
Google Scholar
[10]
R. Prasad and M. Pandey, Rice husk ash as a renewable source for the production of value added silica gel and its application: An overview, Bull. Chem. React. Eng. Catal. 7 (2012) 1–25.
DOI: 10.9767/bcrec.7.1.1216.1-25
Google Scholar
[11]
M. A. Karimi and M. Ranjbar, Hydrothermal synthesis and characterization of caco3 nanostructure, Synth. React. Inorganic, Met. Nano-Metal Chem. 46 (2016) 635-638.
Google Scholar
[12]
A. Chatterjee and S. Mishra, Nano-Calcium carbonate (CaCO3)/Polystyrene (PS) core-shell nanoparticle: It's effect on physical and mechanical properties of high impact polystyrene (HIPS), J. Polym. Res. 20 (2013) 1-12.
DOI: 10.1007/s10965-013-0249-7
Google Scholar
[13]
M. B. Toffolo, The significance of aragonite in the interpretation of the microscopic archaeological record, Geoarchaeology 36 (2021) 149–169.
DOI: 10.1002/gea.21816
Google Scholar
[14]
S. Huang, J. C. Chen, C. W. Hsu, and W. H. Chang, Effects of nano calcium carbonate and nano calcium citrate on toxicity in ICR mice and on bone mineral density in an ovariectomized mice model, Nanotechnology 20 (2009) 1-8.
DOI: 10.1088/0957-4484/20/37/375102
Google Scholar
[15]
Q. Feng, K. Chen, D. Ma, H. Lin, Z. Liu, S. Qin, and Y. Luo, Synthesis of high specific surface area silica aerogel from rice husk ash via ambient pressure drying, Colloids Surfaces A Physicochem. Eng. Asp. 539 (2018) 399–406.
DOI: 10.1016/j.colsurfa.2017.12.025
Google Scholar
[16]
Q. Li and N. J. Coleman, The hydration chemistry of ProRoot MTA, Dent. Mater. J. 34 (2015) 458–465.
DOI: 10.4012/dmj.2014-309
Google Scholar
[17]
K. Seddon, Vogel's Qualitative Inorganic Analysis, sixth ed., United States of America, New York, (1988).
Google Scholar
[18]
M. Fa'izzah, W. Widjijono, Y. Kamiya, and N. Nuryono, Synthesis and characterization of white mineral trioxide aggregate using precipitated calcium carbonate extracted from limestone, Key Eng. Mater. 840 (2020) 330–335.
DOI: 10.4028/www.scientific.net/kem.840.330
Google Scholar
[19]
Y. Guven, E. B. Tuna, M. E. Dincol, and O. Aktoren, X-ray diffraction analysis of MTA-plus, MTA-angelus and diaroot bioaggregate, Eur. J. Dent. 8 (2014) 211–215.
DOI: 10.4103/2278-344x.130603
Google Scholar
[20]
F. Belnou, J. Bernard, D. Houivet, and J. M. Haussonne, Low temperature sintering of MgTiO3 with bismuth oxide based additions, J. Eur. Ceram. Soc. 25 (2005) 2785–2789.
DOI: 10.1016/j.jeurceramsoc.2005.03.140
Google Scholar
[21]
T. Komabayashi and L. S. W. Spangberg, Comparative analysis of the particle size and shape of commercially available mineral trioxide aggregates and portland cement: a study with a flow particle image analyzer, J. Endod. 34 (2008) 94–98.
DOI: 10.1016/j.joen.2007.10.013
Google Scholar