Effect of Titania and Silver Nanoparticles on the Tensile Strength of Cement-Like Mineral Trioxide Aggregate

Article Preview

Abstract:

Several attempts have been conducted to improve the mechanical properties of mineral trioxide aggregate (MTA), including the addition of various nanoparticle materials such as silver and titania. The smaller the added material, the higher the material’s ability to fill the cavity of MTA, thus increasing the tensile strength of MTA after hydration. In this study, the effect of silver nanoparticles (AgNP) concentration and titania (TiO2) mass variation on the tensile strength of MTA was investigated. The ratio of MTA mass to AgNP volume used was 1 g to 330 μL, while TiO2 was added to MTA powder in a solid-solid state with a mass variation. The results show that the addition of AgNP and TiO2 to MTA powder can significantly increase the tensile strength of MTA from 0.404±0.125 to 1.044±0.021 and 1.378±0.391 MPa for 1.5% Ag and 0.5% TiO2, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1068)

Pages:

183-188

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Torabinejad, C.U. Hong, F. McDonald, T.R. Pitt Ford, Physical and chemical properties of a new root-end filling material, J. Endod. 21 (1995) 349–353.

DOI: 10.1016/s0099-2399(06)80967-2

Google Scholar

[2] M. Torabinejad, N. Chivian, Clinical applications of mineral trioxide aggregate, J. Endod. 25 (1999) 197-205.

DOI: 10.1016/s0099-2399(99)80142-3

Google Scholar

[3] O.A. Osiro, D.K. Kariuki, L.W. Gathece, Composition and particle size of mineral trioxide aggregate, Portland cement and synthetic geopolymers, East Afr. Med. J. 95 (2018) 1522–1534.

Google Scholar

[4] M. Fa'izzah, W. Widjijono, Y. Kamiya, N. Nuryono, Synthesis and characterization of white mineral trioxide aggregate using precipitated calcium carbonate extracted from limestone, Key Eng. Mater. 840 (2020) 330–335.

DOI: 10.4028/www.scientific.net/kem.840.330

Google Scholar

[5] M. Ghadafi, SJ Santosa, Y. Kamiya, N. Nuryono, Free Na and less Fe compositions of SiO2 extracted from rice husk ash as the silica source for synthesis of white mineral trioxide aggregate, Key Eng. Mater. 840 (2020) 311–317.

DOI: 10.4028/www.scientific.net/kem.840.311

Google Scholar

[6] F.B. Basturk, M.H. Nekoofar, M. Gunday, P.M.H. Dummer, Effect of varying water-to-powder ratios and ultrasonic placement on the compressive strength of mineral trioxide aggregate, J. Endod. 41 (2015) 531–534.

DOI: 10.1016/j.joen.2014.10.022

Google Scholar

[7] S. Shahi, N. Ghasemi, S. Rahimi, H.R. Yavari, M. Samiei, M. Janani, M. Bahari, S. Moheb, The effect of different mixing methods on the flow rate and compressive strength of mineral trioxide aggregate and calcium-enriched mixture, Iran. Endod. J. 10 (2015) 55-58.

DOI: 10.1016/j.joen.2012.01.001

Google Scholar

[8] N. Ghasemi, S. Rahimi, S. Shahi, A.S. Milani, Y. Rezaei, M. Nobakht, Compressive strength of mineral trioxide aggregate with propylene glycol, Iran. Endod. J. 11 (2016) 325-328.

Google Scholar

[9] N. Jonaidi-Jafari, M. Izadi, P. Javidi, The effects of silver nanoparticles on antimicrobial activity of ProRoot mineral trioxide aggregate (MTA) and calcium enriched mixture (CEM), J. Clin. Exp. Dent. 8 (2016) 1–5.

DOI: 10.4317/jced.52568

Google Scholar

[10] B. Bolhari, N. Merajia, M.R. Sefideha, P. Pedram, Evaluation of the properties of mineral trioxide aggregate mixed with zinc oxide exposed to different environmental conditions, Bioact. Mater. 5 (2020) 516–521.

DOI: 10.1016/j.bioactmat.2020.04.001

Google Scholar

[11] M. Samiei, M., Janani, N. Asl-Aminabadi, N. Ghasemi, B. Divband, S. Shirazi, K. Kafili, Effect of the TiO2 nanoparticles on the selected physical properties of mineral trioxide aggregate, J. Clin. Exp. Dent. 9 (2017) E1-E5.

DOI: 10.4317/jced.53166

Google Scholar

[12] M. Samiei, N. Ghasemi, M. Aghazadeh, B. Divband, F. Akbarzadeh, Biocompatibility of mineral trioxide aggregate with TiO2 nanoparticles on human gingival fibroblasts, J. Clin. Exp. Dent. 9 (2017) E1–E4.

DOI: 10.4317/jced.53126

Google Scholar

[13] V. Zand, M. Lotfi, A. Aghbali, M. Mesgariabbasi, M. Janani, H. Mokhtari, P. Tehranchi, S.M.V. Pakdel, Tissue reaction and biocompatibility of implanted mineral trioxide aggregate with silver nanoparticles in a rat model, Iran. Endod. J., 11 (2016) 13-16.

Google Scholar

[14] B. Mahyad, Biomedical applications of TiO2 nanostructures : Recent Advances, Int. J. Nanomedicine, 15 (2020) 3447–3470.

Google Scholar

[15] M.R. de Moura, F.A. Aouada, L.H.C. Mattoso, V. Zucolotto, Hybrid nanocomposites containing carboxymethylcellulose and silver nanoparticles, J. Nanosci. Nanotechnol. 13 (2013) 1946-1950.

DOI: 10.1166/jnn.2013.7117

Google Scholar

[16] S. Nakamura, M. Sato, Y. Sato, M. Fujita, M. Ishihara, N. Ando, T. Takayama, Synthesis and application of silver nanoparticles (Ag NPs) for the prevention of infection in healthcare workers, Int. J. Mol. Sci. 20 (2019) (15) 1-18.

DOI: 10.3390/ijms20153620

Google Scholar

[17] L.B. Anigol, J.S. Charantimath, P.M. Gurubasavaraj, Effect of concentration and pH on the size of silver nanoparticles synthesized by green chemistry, Org. Med. Chem. Int. J. 3 (2017) 1–5.

Google Scholar

[18] A.A. Becaro, C.M. Jonssonc, F.C. Putia, M.C. Siqueirab, L.H.C. Mattosob, D.S. Correaa, M.D. Ferreiraa, Toxicity of PVA-stabilized silver nanoparticles to algae and microcrustaceans, Environ. Nanotechnol. Monit. Manag. 3 (2015) 22–29.

Google Scholar

[19] J.J. Mock, M. Barbic, D.R. Smith, D.A. Schultz, S. Schultz, Shape effects in plasmon resonance of individual colloidal silver nanoparticles, J. Chem. Phys. 116 (2002) 6755–6759.

DOI: 10.1063/1.1462610

Google Scholar

[20] R.S. Patil, M.R. Kokate, C.L. Jambhale, S.M. Pawar, S.H. Han, S.S. Kolekar, One-pot synthesis of PVA-capped silver nanoparticles their characterization and biomedical application, Adv. Nat. Sci.: Nanosci. Nanotechnol. 3 (2012) 1-7.

DOI: 10.1088/2043-6262/3/1/015013

Google Scholar