[1]
M. Torabinejad, C.U. Hong, F. McDonald, T.R. Pitt Ford, Physical and chemical properties of a new root-end filling material, J. Endod. 21 (1995) 349–353.
DOI: 10.1016/s0099-2399(06)80967-2
Google Scholar
[2]
M. Torabinejad, N. Chivian, Clinical applications of mineral trioxide aggregate, J. Endod. 25 (1999) 197-205.
DOI: 10.1016/s0099-2399(99)80142-3
Google Scholar
[3]
O.A. Osiro, D.K. Kariuki, L.W. Gathece, Composition and particle size of mineral trioxide aggregate, Portland cement and synthetic geopolymers, East Afr. Med. J. 95 (2018) 1522–1534.
Google Scholar
[4]
M. Fa'izzah, W. Widjijono, Y. Kamiya, N. Nuryono, Synthesis and characterization of white mineral trioxide aggregate using precipitated calcium carbonate extracted from limestone, Key Eng. Mater. 840 (2020) 330–335.
DOI: 10.4028/www.scientific.net/kem.840.330
Google Scholar
[5]
M. Ghadafi, SJ Santosa, Y. Kamiya, N. Nuryono, Free Na and less Fe compositions of SiO2 extracted from rice husk ash as the silica source for synthesis of white mineral trioxide aggregate, Key Eng. Mater. 840 (2020) 311–317.
DOI: 10.4028/www.scientific.net/kem.840.311
Google Scholar
[6]
F.B. Basturk, M.H. Nekoofar, M. Gunday, P.M.H. Dummer, Effect of varying water-to-powder ratios and ultrasonic placement on the compressive strength of mineral trioxide aggregate, J. Endod. 41 (2015) 531–534.
DOI: 10.1016/j.joen.2014.10.022
Google Scholar
[7]
S. Shahi, N. Ghasemi, S. Rahimi, H.R. Yavari, M. Samiei, M. Janani, M. Bahari, S. Moheb, The effect of different mixing methods on the flow rate and compressive strength of mineral trioxide aggregate and calcium-enriched mixture, Iran. Endod. J. 10 (2015) 55-58.
DOI: 10.1016/j.joen.2012.01.001
Google Scholar
[8]
N. Ghasemi, S. Rahimi, S. Shahi, A.S. Milani, Y. Rezaei, M. Nobakht, Compressive strength of mineral trioxide aggregate with propylene glycol, Iran. Endod. J. 11 (2016) 325-328.
Google Scholar
[9]
N. Jonaidi-Jafari, M. Izadi, P. Javidi, The effects of silver nanoparticles on antimicrobial activity of ProRoot mineral trioxide aggregate (MTA) and calcium enriched mixture (CEM), J. Clin. Exp. Dent. 8 (2016) 1–5.
DOI: 10.4317/jced.52568
Google Scholar
[10]
B. Bolhari, N. Merajia, M.R. Sefideha, P. Pedram, Evaluation of the properties of mineral trioxide aggregate mixed with zinc oxide exposed to different environmental conditions, Bioact. Mater. 5 (2020) 516–521.
DOI: 10.1016/j.bioactmat.2020.04.001
Google Scholar
[11]
M. Samiei, M., Janani, N. Asl-Aminabadi, N. Ghasemi, B. Divband, S. Shirazi, K. Kafili, Effect of the TiO2 nanoparticles on the selected physical properties of mineral trioxide aggregate, J. Clin. Exp. Dent. 9 (2017) E1-E5.
DOI: 10.4317/jced.53166
Google Scholar
[12]
M. Samiei, N. Ghasemi, M. Aghazadeh, B. Divband, F. Akbarzadeh, Biocompatibility of mineral trioxide aggregate with TiO2 nanoparticles on human gingival fibroblasts, J. Clin. Exp. Dent. 9 (2017) E1–E4.
DOI: 10.4317/jced.53126
Google Scholar
[13]
V. Zand, M. Lotfi, A. Aghbali, M. Mesgariabbasi, M. Janani, H. Mokhtari, P. Tehranchi, S.M.V. Pakdel, Tissue reaction and biocompatibility of implanted mineral trioxide aggregate with silver nanoparticles in a rat model, Iran. Endod. J., 11 (2016) 13-16.
Google Scholar
[14]
B. Mahyad, Biomedical applications of TiO2 nanostructures : Recent Advances, Int. J. Nanomedicine, 15 (2020) 3447–3470.
Google Scholar
[15]
M.R. de Moura, F.A. Aouada, L.H.C. Mattoso, V. Zucolotto, Hybrid nanocomposites containing carboxymethylcellulose and silver nanoparticles, J. Nanosci. Nanotechnol. 13 (2013) 1946-1950.
DOI: 10.1166/jnn.2013.7117
Google Scholar
[16]
S. Nakamura, M. Sato, Y. Sato, M. Fujita, M. Ishihara, N. Ando, T. Takayama, Synthesis and application of silver nanoparticles (Ag NPs) for the prevention of infection in healthcare workers, Int. J. Mol. Sci. 20 (2019) (15) 1-18.
DOI: 10.3390/ijms20153620
Google Scholar
[17]
L.B. Anigol, J.S. Charantimath, P.M. Gurubasavaraj, Effect of concentration and pH on the size of silver nanoparticles synthesized by green chemistry, Org. Med. Chem. Int. J. 3 (2017) 1–5.
Google Scholar
[18]
A.A. Becaro, C.M. Jonssonc, F.C. Putia, M.C. Siqueirab, L.H.C. Mattosob, D.S. Correaa, M.D. Ferreiraa, Toxicity of PVA-stabilized silver nanoparticles to algae and microcrustaceans, Environ. Nanotechnol. Monit. Manag. 3 (2015) 22–29.
Google Scholar
[19]
J.J. Mock, M. Barbic, D.R. Smith, D.A. Schultz, S. Schultz, Shape effects in plasmon resonance of individual colloidal silver nanoparticles, J. Chem. Phys. 116 (2002) 6755–6759.
DOI: 10.1063/1.1462610
Google Scholar
[20]
R.S. Patil, M.R. Kokate, C.L. Jambhale, S.M. Pawar, S.H. Han, S.S. Kolekar, One-pot synthesis of PVA-capped silver nanoparticles their characterization and biomedical application, Adv. Nat. Sci.: Nanosci. Nanotechnol. 3 (2012) 1-7.
DOI: 10.1088/2043-6262/3/1/015013
Google Scholar