[1]
M. Kustov, V. Kalugin, V. Tutunik, E. Tarakhno, Physicochemical principles of the technology of modified pyrotechnic compositions to reduce the chemical pollution of the atmosphere. Voprosy khimii i khimicheskoi tekhnologii, 1 (2019) 92–99.
DOI: 10.32434/0321-4095-2019-122-1-92-99
Google Scholar
[2]
Vambol S., Vambol V., Suchikova Y., Deyneko N. Analysis of the ways to provide ecological safety for the products of nanotechnologies throughout their life cycle. Eastern-European Journal of Enterprise Technologies, 1 (10–85) (2017) 27–36.
DOI: 10.15587/1729-4061.2017.85847
Google Scholar
[3]
S. Vambol, V. Vambol, V. Sobyna, V. Koloskov, L Poberezhna, Investigation of the energy efficiency of waste utilization technology, with considering the use of low-temperature separation of the resulting gas mixtures. Energetika, (4) 64 (2018) 186–195.
DOI: 10.6001/energetika.v64i4.3893
Google Scholar
[4]
A. Semko, M. Beskrovnaya, S. Vinogradov, I. Hritsina, N. Yagudina, The usage of high speed impulse liquid jets for putting out gas blowouts. Journal of Theoretical and Applied Mechanics, 52 3 (2014) 655–664.
Google Scholar
[5]
B. Pospelov, E. Rybka, V. Togobytska, R. Meleshchenko, Yu. Danchenko, Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots. Eastern-European Journal of Enterprise Technologies, 4/10 100 (2019) 22–29.
DOI: 10.15587/1729-4061.2019.176579
Google Scholar
[6]
B. Pospelov, E. Rybka, R. Meleshchenko, O. Krainiukov, S. Harbuz, Yu. Bezuhla, I. Morozov, A. Kuruch, O. Saliyenko, R. Vasylchenko, Use of uncertainty function for identification of hazardous states of atmospheric pollution vector. Eastern-European Journal of Enterprise, 2/10 (104) (2020) 6–12.
DOI: 10.15587/1729-4061.2020.200140
Google Scholar
[7]
Popov O., Iatsyshyn A., Kovach V., Artemchuk V., Taraduda D., Sobyna V., Sokolov D., Dement M., Hurkovskyi V., Nikolaiev K., Yatsyshyn T., Dimitriieva D. Physical features of pollutants spread in the air during the emergency at NPPs. Nuclear and Radiation Safety, 4 (84) (2019) № 11.
DOI: 10.32918/nrs.2019.4(84).11
Google Scholar
[8]
Popov O., Taraduda D., Sobyna V., Sokolov D., Dement M., Pomaza-Ponomarenko A. Emergencies at Potentially Dangerous Objects Causing Atmosphere Pollution: Peculiarities of Chemically Hazardous Substances Migration. Studies in Systems. Decision and Control, 298 (2020) 151–163.
DOI: 10.1007/978-3-030-48583-2_10
Google Scholar
[9]
B. Pospelov, V. Andronov, E. Rybka, O. Krainiukov, N. Maksymenko, R. Meleshchenko, Yu. Bezuhla, I. Hrachova, R. Nesterenko, А. Shumilova, Mathematical model of determining a risk to the human health along with the detection of hazardous states of urban atmosphere pollution based on measuring the current concentrations of pollutants. Eastern-European Journal of Enterprise, 4/10 (106) (2020) 37–44.
DOI: 10.15587/1729-4061.2020.210059
Google Scholar
[10]
B. Pospelov, E. Rybka, R. Meleshchenko, P. Borodych, S. Gornostal, Development of the method for rapid detection of hazardous atmospheric pollution of cities with the help of recurrence measures. Eastern-European Journal of Enterprise, 1/10 (97) (2019) 29–35.
DOI: 10.15587/1729-4061.2019.155027
Google Scholar
[11]
S. Vambol, V. Vambol, O. Kondratenko, Y. Suchikova, O. Hurenko Assessment of improvement of ecological safety of power plants by arranging the system of pollutant neutralization. Eastern-European Journal of Enterprise Technologies, 3 10–87 (2017) 63–73.
DOI: 10.15587/1729-4061.2017.102314
Google Scholar
[12]
M. Kustov, E. Slepuzhnikov, V. Lipovoy, D.I. Firdovsi, O. Buskin, Procedure for implementation of the method of artificial deposition of radioactive substances from the atmosphere. Nuclear and Radiation Safety, 3 (83) (2019) 13–25.
DOI: 10.32918/nrs.2019.3(83).02
Google Scholar
[13]
S. Ragimov, V. Sobyna, S. Vambol, V. Vambol, A. Feshchenko, A. Zakora, E. Strejekurov, V. Shalomov, Physical modelling of changes in the energy impact on a worker taking into account high-temperature radiation. Journal of Achievements in Materials and Manufacturing Engineering, 91 1 (2018) 27–33.
DOI: 10.5604/01.3001.0012.9654
Google Scholar
[14]
Y. Danchenko, V. Andronov, E. Barabash, T. Obigenko, E. Rybka, R. Meleshchenko, A. Romin, Research of the intramolecular interactions and structure in epoxyamine composites with dispersed oxides. Eastern-European Journal of Enterprise Technologies, 6 12-90 (2017) 4–12.
DOI: 10.15587/1729-4061.2017.118565
Google Scholar
[15]
Y. Danchenko, V. Andronov, M. Teslenko, V. Permiakov, E. Rybka, R. Meleshchenko, A. Kosse, Study of the free surface energy of epoxy composites using an automated measurement system. Eastern-European Journal of Enterprise Technologies, 1 12-91 (2018) 9–17.
DOI: 10.15587/1729-4061.2018.120998
Google Scholar
[16]
T. Elperin, A. Fominykh, B. Krasovitov, A. Vikhansky, Effect of rain scavenging on altitudinal distribution of soluble gaseous pollutants in the atmosphere. Atmospheric Environment, 45(14) (2011) 2427–2433.
DOI: 10.1016/j.atmosenv.2011.02.008
Google Scholar
[17]
M. V. Kustov, Тhe study of formation and acid precipitation dynamics as a result of big natural and man-made fires. Eastern-European Journal of Enterprise Technologies, 10(72) (2016) 11–17.
DOI: 10.15587/1729-4061.2016.59685
Google Scholar
[18]
M. Shiraiwa, C. Pfrang, T. Koop, U. Pöschl, Kinetic multi-layer model of gas-particle interactions in aerosols and clouds (KM-GAP): linking condensation, evaporation and chemical reactions of organics, oxidants and water. Atmospheric Chemistry and Physics, 12(5) (2012) 2777–2794.
DOI: 10.5194/acp-12-2777-2012
Google Scholar
[19]
T. Tsuruta, G. Nagayama, Molecular dynamics studies on the condensation coefficient of water. The Journal of Physical Chemistry B, 108(5) (2004) 1736–1743.
DOI: 10.1021/jp035885q
Google Scholar
[20]
A. Leelossy, F. Molnar, F. Izsak, A. Havasi, I. Lagzi, R. Meszaros, Dispersion modeling of air pollutants in the atmosphere: a review. Central European Journal of Geosciences, 6 (2014) 257–278.
Google Scholar
[21]
M. Kustov, A. Melnychenko, D. Taraduda, A. Korogodska, Research of the Chlorine Sorption Processes when its Deposition by Water Aerosol. In Materials Science Forum, 1038 (2021) 361–373.
DOI: 10.4028/www.scientific.net/msf.1038.361
Google Scholar
[22]
M. Kustov, V. Kalugin, O. Hristich, Yu. Hapon, Recovery Method for Emergency Situations with Hazardous Substances Emission into the Atmosphere age. International Journal of Safety and Security Engineering. 11(4) (2021) 419-426. https://doi.org/10.18280/ijsse.110415.
DOI: 10.18280/ijsse.110415
Google Scholar
[23]
V. Sadkovyi, B. Pospelov, V. Andronov, E. Rybka, O. Krainiukov, А. Rud, K. Karpets, Yu. Bezuhla, Construction of a method for detecting arbitrary hazard pollutants in the atmospheric air based on the structural function of the current pollutant concentrations. Eastern-European Journal of Enterprise, 6/10 (108) (2020) 14–22. https://doi.org/10.15587/1729-4061.2020.218714.
DOI: 10.15587/1729-4061.2020.218714
Google Scholar
[24]
D. Dubinin, K. Korytchenko, A. Lisnyak, I. Hrytsyna, V. Trigub, Improving the installation for fire extinguishing with finelydispersed water. Eastern-European Journal of Enterprise Technologies. 2 10–92 (2018) 38–43.
DOI: 10.15587/1729-4061.2018.127865
Google Scholar
[25]
I. Dadashov, V. Loboichenko, A. Kireev, (2018). Analysis of the ecological characteristics of environment friendly fire fighting chemicals used in extinguishing oil products. Pollution Research, 37(1) (2018) 63–77.
Google Scholar
[26]
B. Pospelov, V. Andronov, E. Rybka, O. Krainiukov, K. Karpets, O. Pirohov, I. Semenyshyna, R. Kapitan, A. Promska, O. Horbov, Development of the correlation method for operative detection of recurrent states. Eastern-European Journal of Enterprise, 6/4 102 (2019) 39–46.
DOI: 10.15587/1729-4061.2019.187252
Google Scholar
[27]
A. Chernukha, A. Сhernukha, P. Kovalov, A. Savchenko, Thermodynamic Study of Fire-Protective Material. Materials Science Forum, 1038 (2021) 486–491.
DOI: 10.4028/www.scientific.net/msf.1038.486
Google Scholar