Hardness and Compressive Strength Evaluation of Dental Composites Containing Biosilica-Encapsulated Healing Liquid

Article Preview

Abstract:

Tooth cavity is one of the most common dental health problems in Indonesia that can be treated by applying dental fillings. However, dental fillings often experience microcrack and secondary caries. Self-Healing Dental Materials (SHDM) which use microencapsulation technique as healing system, are developed to solve this problem. In this work, we employed mesoporous biosilica from Cyclotella striata TBI as microcapsule to entrap healing liquid contains polyacrylic acid and polybasic carboxylic acid. SHDM was prepared by mixing Filtek Z350XT flowable composite with fluoroaluminosilicate healing powder and healing liquid encapsulated in biosilica. We also added silica containing cetyltrimethyl ammonium bromide (CTAB@PSN) filler as antibacterial agent. Six groups of tested samples were prepared with various composition of biosilica and CTAB@PSN. Filtek composite was used as a control. We studied the entrapment of helaing liquid in biosilica and effect of biosilica addition towards mechanical properties of the resulting SHDM. The statistical analysis was determined using ANOVA. Scanning Electron Microscopy and Fourier Transform Infra-Red showed that the microencapsulation of healing liquid in biosilica was successful with immersion method without stirring. Addition of biosilica and CTAB@PSN fillers into the Filtek composites resulted in the decrease of the mechanical properties. The hardness values of the resulting composites were in the range 44.33–53.25 VHN. Nevertheless, the hardness values were still comparable to the hardness of dentin. Addition of filler decreased the compressive strength, but statistically insignificant, from 268.68 MPa to 228.53–252.04 MPa. To conclude, healing liquid can be entrapped in porous biosilica. Adding healing agent affects SHDM composite’s hardness but not its compressive strength.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1069)

Pages:

111-119

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Chan, Y. Mai, H. Kim and et al, Review: Resin composite filling, Materials 3 (2010) 1228-1243.

Google Scholar

[2] H. Alzraikat, M. Burrow, G. Maghaireh and N. Taha, Nanofilled resin composite properties and clinical performance: A review, Operative Dentistry 43 (2018) E173-E190.

DOI: 10.2341/17-208-t

Google Scholar

[3] Á. Ástvaldsdóttir, J. Dagerhamn, J. W. V. van Dijken, A. Naimi-Akbar, G. Sandborgh-Englund, S. Tranæus and M. Nilsson, Longevity of posterior resin composite restorations in adults – A systematic review, J. Dent. 43(2015) 934-954.

DOI: 10.1016/j.jdent.2015.05.001

Google Scholar

[4] D. Leung, D. A. Spratt, P. J., K. Gulabivala, N. J. Mordan and N. M. Young, Chlorhexidine-releasing methacrylate dental composite materials, Biomaterials, 26(2005) 7145-7153.

DOI: 10.1016/j.biomaterials.2005.05.014

Google Scholar

[5] B. E. Wertzberger, J. T. Steere, R. M. Pfeifer, M. A. Nensel, M. A. Latta and S. M. Gross, Physical characterization of a self-healing dental restorative material, J. Appl. Polym. Sci. 118 (2010) 428-434.

DOI: 10.1002/app.31542

Google Scholar

[6] W. Junling, M. D. Weit, Q. Zhang, C. Zhou, M. A. S. Melo and H. H. K. Xu, Novel self-healing dental resin with microcapsules of polymerizable triethylene glycol dimethacrylate and N,N-dihydroxyethyl-p-toluidine, Dent. Mater. 32 (2016) 294-304.

DOI: 10.1016/j.dental.2015.11.014

Google Scholar

[7] K. Althaqafi, J. Satterthwaite and N. Silikas, A review and current state of autonomic self-healing microcapsules-based dental resin composites, Dent. Mater. 36 (2020) 329-342.

DOI: 10.1016/j.dental.2019.12.005

Google Scholar

[8] W. Junling, M. D. Weir, M. A. S. Melo and H. H. K. Xu, Development of novel self-healing and antibacterial dental composite containing calcium phosphate nanoparticles, J. Dent. 43 (2015) 317-326.

DOI: 10.1016/j.jdent.2015.01.009

Google Scholar

[9] W. Junling, M. D. Weir, M. A. S. Melo, H. E. Strassler and H. H. K. Xu, Effects of water-aging on self-healing dental composite containing microcapsules J. Dent. 47 (2016) 86-93.

DOI: 10.1016/j.jdent.2016.01.008

Google Scholar

[10] G. Huyang, A. E. Debertin and J. Sun, Design and development of self-healing dental composites, Mater. Des. 94 (2016) 295-302.

DOI: 10.1016/j.matdes.2016.01.046

Google Scholar

[11] Sharma, S. Alam, C. Sharma, A. Patnaik and S. R. Kumar, Static and dynamic mechanical behavior of microcapsule-reinforced dental composite, Proc. Inst. Mech. Eng. L 233 (2017) 1184-1190.

DOI: 10.1177/1464420717733770

Google Scholar

[12] M. Yahyazadehfar, G. Huyang, X. Wang, Y. Fan, D. Arola and J. Sun, Durability of self-healing dental composites: A comparison of performance under monotonic and cyclic loading, Mater. Sci. Eng. C 93 (2018) 1020-1026.

DOI: 10.1016/j.msec.2018.08.057

Google Scholar

[13] M. Terracciano, L. D. Stefano and I. Rea, Diatoms green nanotechnology for biosilica-based drug delivery system, Pharmaceutics 10 (2018) 242.

DOI: 10.3390/pharmaceutics10040242

Google Scholar

[14] S. Maher, T. Kumeria, M. S. Aw and D. Losic, Diatom silica for biomedical applications: Recent progress and advances, Adv. Healthc. Mater. 7 (2018) 1800552.

DOI: 10.1002/adhm.201800552

Google Scholar

[15] J. Delasoie and F. Zobi, Natural diatom biosilica as microshuttles in drug delivery systems,"Pharmaceutics 11 (2019) 537.

DOI: 10.3390/pharmaceutics11100537

Google Scholar

[16] M. S. Aw, S. Simovic, J. Addai-Mensah and D. Losic, Silica microcapsules from diatoms as new carrier for delivery of therapeutics, Nanomedicine 6 (2011) 1159-1173.

DOI: 10.2217/nnm.11.29

Google Scholar

[17] S. R. Cicco, D. Vona, G. Roberto. E. Sardella, R. Ragni,M. L. Presti, G. M. Farinola, Biosilica from living diatoms: Investigations on biocompatibility of bare and chemically modified Thalassiosira weissflogii silica shells, bioenginerring, vol. 3 (2016) 35.

DOI: 10.3390/bioengineering3040035

Google Scholar

[18] V. Askikfgajer and e. al, Technical product profile Filtek Z350XT Flowable Restorative, 3M ESPE.

Google Scholar

[19] C. Chuenarrom, P. Benjakul and P. Daosodsai, Effect of indentation load and time on knoop and vickers microhardness tests for enamel and dentin, Materials Research, 12 (2009) 473-476.

DOI: 10.1590/s1516-14392009000400016

Google Scholar