Effect of Hydroxyapatite Synthesized from Tilapia Fish Scale Waste on the Shear Bond Strength of GIC and RMGIC to Enamel Layer (In Vitro Study)

Article Preview

Abstract:

Indonesia is a country that has many types of freshwater fish, one of which is tilapia. The consumption of tilapia among the people of Indonesia is quite high. So that, it will produce a lot of fish scale waste. Fish scales can be used as a natural source of hydroxyapatite because they contain calcium. The aim of this study was to evaluate the effect of hydroxyapatite synthesized from tilapia fish scale (Oreochromis niloticus) on the shear bond strength of glass ionomer cement and resin modified glass ionomer cement to enamel layer. Hydroxyapatite was synthesized from tilapia fish scale (Oreochromis niloticus) by calcination method at 800°C. Sample was made from glass ionomer cement (GIC) and resin modified glass ionomer cement (RMGIC) combined with 2, 5 and 8%wt of hydroxyapatite, respectively. Sample was bonded to enamel layer of human premolar tooth. The shear bond strength of sample was tested by using Universal Testing Machine. The result showed that shear bond strength were increased for higher concentration of hydroxyapatite that added to glass ionomer cement or resin modified glass ionomer cement. The maximum of shear bond strength of GIC Group is 6,38 ± 0,05MPa after 8%wt hydroxyapatite addition. The maximum of shear bond strength of RMGIC Group is 6,59 ± 0,06 MPa after 8%wt hydroxyapatite addition. There were significance differences among all group tested (p <0.05). It can be concluded that hydroxyapatite synthesized from tylapia fish scale can increase the shear bond strength of glass ionomer cement and resin modified glass ionomer cement.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1069)

Pages:

135-143

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M Almuhaiza, Glass ionomer cement in restorative dentistry : a critical appraisal, JCDP. 17 (2016) 331-6.

DOI: 10.5005/jp-journals-10024-1850

Google Scholar

[2] TRM Singh, P Suresh, J Sandhyarani, J Sravanthi, Glass ionomer cement (GIC) in dentistry : review, IJPAES. 1 (2011) 26-30.

Google Scholar

[3] DS Ningsih, Resin modified glass ionomer cement sebagai material alternatif restorasi untuk gigi sulung, Odonto Dent J. 1 (2014) 46-51.

DOI: 10.30659/odj.1.2.46-51

Google Scholar

[4] RL Sakaguchi., JM Powers, Craig's restorative dental material, 13th ed., Philadelphia, Mosby Elsevier, (2012).

Google Scholar

[5] V Arora, M Kundabala, A Parolia, MS Thomas, V Pai, Comparison of the shear bond strength of RMGIC to a resin composite using different adhesive systems: an in vitro study, J Conserve Dent.13 (2010) 80-1.

DOI: 10.4103/0972-0707.66716

Google Scholar

[6] M Sadeghi, M Atafat, M Abbasi, Shear bond strength evaluation of resin composite to resin modified glass ionomer cement using three different resin adhesives vs glass ionomer based adhesive, JDMT. 4 (2015) 154-5.

DOI: 10.4103/0972-0707.178696

Google Scholar

[7] R Di Nicolo, LK Shintome, SI Myaki, MP Nagayassu, Bond strength of resin modified glass ionomer cement to primary dentin after cutting different bur types and dentin conditioning, J Appl Oral Sci. 15 (2007) 459-64.

DOI: 10.1590/s1678-77572007000500016

Google Scholar

[8] R Somani, S Jaidka, D Singh, GK Sibal, Comparative Evaluation of Shear Bond Strength of Various Glass Ionomer Cements to Dentin of Primary Teeth: An in vitro Study, Int J Clin Pediatr Dent. 9 (2016) 192-6.

DOI: 10.5005/jp-journals-10005-1362

Google Scholar

[9] AV Ritter, LW Boushell, JR Sturdevant, Sturdevant's art and science of operative dentistry. Seventh Edition. Missouri: Elsevier (2019) 2.

Google Scholar

[10] S Garoushi, PK Vallittu, L Lassila, Reinforcing effect of discontinuous microglass fibers on resin modified glass ionomer cement, Dent Matter J. 37 (2018) 484-92.

DOI: 10.4012/dmj.2017-234

Google Scholar

[11] F Barandehfard, R Kianpour, A Hosseinnia, et al, The addition of synthesized hydroxyapatite and fluorapatite nano particles to a glass ionomer cement for dental restoration and its effects on mechanical properties, Ceramics International. 42 (2016) 1-10.

DOI: 10.1016/j.ceramint.2016.08.122

Google Scholar

[12] M Mozartha, Praziandithe M, Sulistiawati, Pengaruh penambahan hidroksiapatit dari cangkang telur terhadap kekuatan tekan glass ionomer kaca, Jurnal B-Dent. 2 (2015) 75-81.

DOI: 10.33854/jbdjbd.42

Google Scholar

[13] K Choudhary, B Nandlal, Comparative evaluation of shear bond strength of nanohydroxyapatite incorporated glass ionomer cement and conventional glass ionomer cement on dense synthetic hydroxyapatite disk: An in vitro study, Indian J Dent Res. 26 (2015) 170-7.

DOI: 10.4103/0970-9290.159152

Google Scholar

[14] K Poorzandpoush, LR Omrani, SH Jafarnia, P Golkas, M Atai, Effect of addition of nano hydroxyapatite particles on wear of resin modified glass ionomer by tooth brushing simulation, J Clin Exp Dent. 9 (2017) 372-6.

DOI: 10.4317/jced.53455

Google Scholar

[15] R Firnanda, Sugito, Fakhrurrazi, DVS Ambarwati, Isolasi aeromonas hydrophilia pada sisik ikan nila (Oreochromis niloticus) yang diberi tepung daun jaloh (salix tetrasperma roxb), J Medika Veterinaria. 7 (2013) 22-4.

DOI: 10.21157/j.med.vet..v7i1.2913

Google Scholar

[16] Muhotimah, B Triyatmo, SB Priyono, T Kuswoyo, Analisis morfometrik dan meristik nila (Oreochromis sp.) strain larasati f5 dan tetuanya, J Fisch Sci. 15 (2013) 42-53.

Google Scholar

[17] Direktorat Jenderal Perikanan Budidaya Kementerian Kelautan dan Budidaya. Laporan kinerja Tahun 2017 Direktorat Jenderal Perikanan Budidaya: Direktorat Jenderal Perikanan Budidaya Kementerian Kelautan dan Budidaya, 2017 28-39.

DOI: 10.35912/yumary.v1i4.195

Google Scholar

[18] J Sukaimi, S Hamzah, M Sabri, Green synthesis and characterization of hydroxyapatite from fish scale biowaste, AMM. 2015 695 (2015) 235-8.

DOI: 10.4028/www.scientific.net/amm.695.235

Google Scholar

[19] YC Huang, PC Hsiao, HJ Chai, Hydroxyapatite extracted from fish scale: effects on mg63 osteoblast like cells, J Ceram Int. 37 (2011) 1825-31.

DOI: 10.1016/j.ceramint.2011.01.018

Google Scholar

[20] R Imataki, Y Shinonaga, T Nishimura, Y Abe, K Arita, Mechanical and function properties of a novel apatite-ionomer cement for prevention an remineralization of dental caries, Materials. 12 (2019) 1-13.

DOI: 10.3390/ma12233998

Google Scholar

[21] EM Lucas, K Arita, M Nishino, Toughness, bonding and fluoride-release properties of hydroxyapatite-added glass ionomer cement, Biomaterials. 24(2003) 3787- 94.

DOI: 10.1016/s0142-9612(03)00260-6

Google Scholar

[22] S Bayrak, TE Sen, N Tuloglu, The effects of surface pretreatment on the microleakage of resin-modified glass-ionomer cement restorations, J Clin Ped Dent. 36 (2012) 279-84.

DOI: 10.17796/jcpd.36.3.h827442j74862742

Google Scholar

[23] HM Azam, Z Iqbal, Effect of addition of hydroxyapatite on tensile strength of resin modified glass ionomer cement, IMJ. 10 (2018) 267-6.

Google Scholar

[24] Ariany S, Suwelo IS, Heriandi S. Pengaruh perbedaan durasi aplikasi kondisioner terhadap gambaran penetrasi semen ionomer kaca pada dentin gigi sulung. JKGUI 2003; 10: 252-9.

DOI: 10.14693/jdi.v14i3.847

Google Scholar

[25] A Moshaverinia, S Ansari, M Moshaverinia, N Roohpour, JA Darr, I Rehman, Effect of incorporation of hydroxyapatite and fluoroapatite nanobioceramic into conventional glass ionomer cement (GIC), Acta Biomaterialia. 4 (2008) 432-40.

DOI: 10.1016/j.actbio.2007.07.011

Google Scholar

[26] F Sharafeddin, S Shoale, M Kowkabi, Effect of different percentage of microhydroxyapatite on microhardness of resin-modified glass-ionomer and zirconomer, J Clin Exp Dent. 9(2017) 805-11.

DOI: 10.4317/jced.53668

Google Scholar

[27] NM Sari, ES Tabaii, AS Vaziri, H Ghaffari, MA Kashani, GE Amirabadi, Effect of nano-hydroxyapatitte incorporation into resin modified glass ionomer cement on ceramic bracket debonding, J Islam Dent Assoc Iran. 26 (2014) 208-13.

DOI: 10.9734/arrb/2014/8560

Google Scholar

[28] M Memarpour, F Shafiei, M Soltani, MH Dashti, Effect of hydroxyapatite nanoparticles on enamel remineralization and estimation of fissure sealant bond strength to remineralized tooth surfaces: an in vitro study, BMC Oral Health. 19 (2019) 1-14.

DOI: 10.1186/s12903-019-0785-6

Google Scholar

[29] AA Majhool, I Zainol, CN Jaafar, et al, A brief review on biomedical application of hydroxyapatite use as fillers in polymer, J Chem Chem Eng.13 (2019) 112-9.

Google Scholar

[30] R Budirahardjo, Sisik Ikan Sebagai Bahan Yang Berpotensi Mempercep Proses Penyembuhan Jaringan Lunak Rongga Mulut, Regenerasi Dentin Tulang Alveolar, JKG Unej. 7 (2010) 136-40.

Google Scholar

[31] OH Ojedo-Nino, C Blanco, CE Daza, High temperature CO2 capture of hydroxyapatite extracted from tilapia scales, Univ Sci. 22 (2017) 215-37.

DOI: 10.11144/javeriana.sc22-2.htcc

Google Scholar

[32] AW Harahap, Z Helwani, Zultiniar, Yelmida, Sintesis Hidroksiapatit melalui Precipitated Calcium Carbonate (PCC) Cangkang Kerang Darah dengan Metode Hidrotermal pada Variasi ph dan Waktu Reaksi, Jom FTEKNIK. 2 (2015) 1-8.

Google Scholar

[33] W Suo-Lian, K Huai-Bin, L Dong-Jiao, Technology for extracting effective components from fish scale, J Food Sci and Engineering. (2017).

DOI: 10.17265/2159-5828/2017.07.003

Google Scholar