Influence of Seawater Treatment Duration on Physico-Mechanical Properties of Banana Trunk Lignocellulosic Fibers

Article Preview

Abstract:

The revolution towards using lignocellulosic agro-residues as polymer composite reinforcements compels a fresh look at the entire operations from inception to final composite products. Chemical treatment is a frequently reported method that enhances interfacial and fiber-matrix adhesion properties. However, our study utilised seawater treatment for fiber surface modification as an eco-friendly and cost-effective approach compared to the toxic chemical reagents. Banana trunk layers were immersed in seawater for 7, 14, 21, and 28 days at ambient conditions before fiber extraction. Our results revealed that the treatment duration affected the extracted fibers’ physico-mechanical properties compared to untreated fibers. Scanning electron microscopy showed significant alterations in fiber surfaces. At optimum treatment duration, we found that treated fiber density increased to 1.31 g/cm3, cross-sectional area decreased by 45.6 % and tensile strength increased to 389 Mpa. This research was undertaken to demonstrate the potential of utilizing the abundant non-potable seawater for banana fiber extraction process as a way of lessening use of toxic chemicals and freshwater scarcity in the desert and arid regions.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1069)

Pages:

17-22

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Cai, H. Takagi, A. N. Nakagaito, Y. Li and G. I. N. Waterhouse, Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites, Compos. - A: Appl. Sci. Manuf. 90 (2016) 589-597.

DOI: 10.1016/j.compositesa.2016.08.025

Google Scholar

[2] L. Mohammed, M. N. M. Ansari, G. Pua, M. Jawaid and M. S. Islam, A Review on Natural Fiber Reinforced Polymer Composite and Its Applications, Int. J. Polym. Sci. 2015 (2015) 1-15.

DOI: 10.1155/2015/243947

Google Scholar

[3] P. Gañán, R. Zuluaga, J. M. Velez and I. Mondragon, Biological Natural Retting for Determining the Hierarchical Structuration of Banana Fibers, Macromol. Biosci. 4 (10) (2004) 978-983.

DOI: 10.1002/mabi.200400041

Google Scholar

[4] Information on http://www.fao.org/faostat.

Google Scholar

[5] K. J. Vishnu Vardhini and R. Murugan, Effect of Laccase and Xylanase Enzyme Treatment on Chemical and Mechanical Properties of Banana Fiber, J. Nat. Fibers 14 (2) (2017) 217-227.

DOI: 10.1080/15440478.2016.1193086

Google Scholar

[6] R. Brindha, C. K. Narayana, V. Vijayalakshmi and R. P. Nachane, Effect of different retting processes on yield and quality of banana pseudostem fiber, J. Nat. Fibers 16 (1) (2019) 58-67.

DOI: 10.1080/15440478.2017.1401505

Google Scholar

[7] L. D. Soraisham, N. Gogoi, L. Mishra and G. Basu, Extraction and Evaluation of Properties of Indian Banana Fibre (Musa Domestica Var. Balbisiana, BB Group) and Its Processing with Ramie, J. Nat. Fibers (2021) 1-12.

DOI: 10.1080/15440478.2021.1897728

Google Scholar

[8] K. Vishnu Vardhini, R. Murugan and R. Surjit, Effect of alkali and enzymatic treatments of banana fibre on properties of banana/polypropylene composites, J. Ind. Text. 47 (7) (2018) 1849-1864.

DOI: 10.1177/1528083717714479

Google Scholar

[9] G. M. Arifuzzaman Khan, M. S. Alam Shams, M. R. Kabir, M. A. Gafur, M. Terano and M. S. Alam, Influence of chemical treatment on the properties of banana stem fiber and banana stem fiber/coir hybrid fiber reinforced maleic anhydride grafted polypropylene/low-density polyethylene composites, J. Appl. Polym. Sci. 128 (2) (2013) 1020-1029.

DOI: 10.1002/app.38197

Google Scholar

[10] B. Deepa, E. Abraham, B. M. Cherian, A. Bismarck, J. J. Blaker, L. A. Pothan, A. L. Leao, S. F. De Souza and M. Kottaisamy, Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion, Bioresour. Technol. 102 (2) (2011) 1988-1997.

DOI: 10.1016/j.biortech.2010.09.030

Google Scholar

[11] Z. Sheng, J. Gao, Z. Jin, H. Dai, L. Zheng and B. Wang, Effect of steam explosion on degumming efficiency and physicochemical characteristics of banana fiber, J. Appl. Polym. Sci. 131 (16) (2014).

DOI: 10.1002/app.40598

Google Scholar

[12] H. Mardin, I. G. Wardana, Pratikto, W. Suprapto and K. Kamil, Effect of Sugar Palm Fiber Surface on Interfacial Bonding with Natural Sago Matrix, Adv. Mater. Sci. Eng. 2016 (2016) 1-5.

DOI: 10.1155/2016/9240416

Google Scholar

[13] B. Rashid, Z. Leman, M. Jawaid , M. J. Ghazali and M. R. Ishak, Influence of Treatments on the Mechanical and Thermal Properties of Sugar Palm Fibre Reinforced Phenolic Composites, BioResources 12 (2017) 1447-62.

DOI: 10.15376/biores.12.1.1447-1462

Google Scholar

[14] B. Rashid, Z. Leman, M. Jawaid, M. J. Ghazali and M. R. Ishak, Physicochemical and thermal properties of lignocellulosic fiber from sugar palm fibers: effect of treatment, Cellulose 23 (5) (2016) 2905-2916.

DOI: 10.1007/s10570-016-1005-z

Google Scholar

[15] S. Juradin, I. Boko, I. Netinger Grubeša, D. Jozić and S. Mrakovčić, Influence of different treatment and amount of Spanish broom and hemp fibres on the mechanical properties of reinforced cement mortars, Constr. Build. Mater. 273 (2021) 121702.

DOI: 10.1016/j.conbuildmat.2020.121702

Google Scholar

[16] R. Sana, K. Foued, B. M. Yosser, J. Mounir, M. Slah and D. Bernard, Flexural properties of typha natural fiber-reinforced polyester composites, Fibers Polym. 16 (11) (2015) 2451-2457.

DOI: 10.1007/s12221-015-5306-x

Google Scholar

[17] L. Jiang, P. Du and H. Wang, Seawater modification of lignocellulosic fibers: comparison of rice husk and rice straw fibers, Mater. Res. Express 8 (3) (2021) 035102.

DOI: 10.1088/2053-1591/abe8c4

Google Scholar

[18] L. Jiang, H. Wang, Y. Kong and P. Du, Physicochemical and thermal properties of lignocellulosic fibers from wheat straw: Effect of seawater modification, Mater. Res. Express 8 (2021) 055101.

DOI: 10.1088/2053-1591/abf9cb

Google Scholar

[19] A. El Oudiani, Y. Chaabouni, S. Msahli and F. Sakli, Physico-chemical characterisation and tensile mechanical properties of Agave americanaL. fibres, J. Text. Inst. 100 (5) (2009) 430-439.

DOI: 10.1080/00405000701863350

Google Scholar

[20] F. Gapsari, A. Purnowidodo, S. Hidayatullah and S. Suteja, Characterization of Timoho Fiber as a reinforcement in green composite, J. Mater. Res. Technol. 13 (2021) 1305-1315.

DOI: 10.1016/j.jmrt.2021.05.049

Google Scholar

[21] L. A. Elseify, M. Midani, A. H. Hassanin, T. Hamouda and R. Khiari, Long textile fibres from the midrib of date palm: Physiochemical, morphological, and mechanical properties, Ind. Crops Prod. 151 (2020) 112466.

DOI: 10.1016/j.indcrop.2020.112466

Google Scholar

[22] M. Bar, H. Belay, A. Ramasamy, A. Das and P. Ouagne, Refining of Banana Fiber for Load Bearing Application through Emulsion Treatment and Its Comparison with Other Traditional Methods, J. Nat. Fibers (2021) 1-18.

DOI: 10.1080/15440478.2021.1902901

Google Scholar