Ballistic Testing Simulation of Ultra-High Strength Steel Water Layer Sandwich Structure

Article Preview

Abstract:

In designing materials to resist impact and penetrations, numerical simulation offers effective means to ascertain impact mechanism close to practical experimental procedures. This work presents penetration characteristics of water as an inter-layer between ultra-high strength steel sandwich structure. Residual velocities for both monolithic and sandwiched structures have been investigated. In the case of the monolithic structure, good agreement was found between experimental and simulation results in reducing projectile initial velocity of 854 m/s to obtained residual velocities of 487 m/s and 460 m/s respectively. Energy dissipation capability of water as an interlayer has also been investigated. Water, proving very effective in decreasing projectile velocity of 390 m/s to zero in a 2 mm steel-2 mm water – 2 mm steel sandwich system. Numerical simulation has been carried out using Ansys Explicit / Autodyn – a commercial software based on finite element method which is very effective in solving non-linear problems. Lagrange elements were used in the discretization of both the water and steel media.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1069)

Pages:

23-29

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Kiliç, B. Ekici, Ballistic resistance of high hardness armor steels against 7.62 mm armor piercing ammunition, Mater. Des. 44 (2013) 35–48.

DOI: 10.1016/j.matdes.2012.07.045

Google Scholar

[2] P. Nyanor, A.S. Hamada, M.A. Hassan, Ballistic impact simulation of proposed bullet proof vest made of TWIP steel, water and polymer sandwich composite using Fe-SPH coupled technique, Key Eng. Mater. 786 (2018) 302–313.

DOI: 10.4028/www.scientific.net/kem.786.302

Google Scholar

[3] N. Nsiampa, F. Coghe, G. Dyckmans, Numerical investigation of the bodywork effect (K-effect), (2009) 1561–1566.

DOI: 10.1051/dymat/2009220

Google Scholar

[4] H. Kurtaran, M. Buyuk, A. Eskandarian, Ballistic impact simulation of GT model vehicle door using finite element method, Theor. Appl. Fract. Mech. 40 (2003) 113–121.

DOI: 10.1016/s0167-8442(03)00039-9

Google Scholar

[5] A.M. Petrudi, K. Vahedi, M. Rahmani, M.M. Petrudi, Numerical and analytical simulation of ballistic projectile penetration due to high velocity impact on ceramic target, Frat. Ed Integrita Strutt. 14 (2020) 226–248.

DOI: 10.3221/igf-esis.54.17

Google Scholar

[6] K. Krishnan, S. Sockalingam, S. Bansal, S.D. Rajan, Numerical simulation of ceramic composite armor subjected to ballistic impact, Compos. Part B Eng. 41 (2010) 583–593.

DOI: 10.1016/j.compositesb.2010.10.001

Google Scholar

[7] S. Signetti, F. Bosia, S. Ryu, N.M. Pugno, A combined experimental/numerical study on the scaling of impact strength and toughness in composite laminates for ballistic applications, Compos. Part B Eng. 195 (2020) 108090.

DOI: 10.1016/j.compositesb.2020.108090

Google Scholar

[8] Y. Yang, X. Chen, Investigation on energy absorption efficiency of each layer in ballistic armour panel for applications in hybrid design, Compos. Struct. 164 (2017) 1–9.

DOI: 10.1016/j.compstruct.2016.12.057

Google Scholar

[9] P. V. Cavallaro, Soft Body Armor : An Overview of Materials , Manufacturing , Testing , and Ballistic Impact Dynamics Naval Undersea Warfare Center Division, NUWC-NPT Tech. Rep. 12. 12 (2011) 1–22.

DOI: 10.21236/ada549097

Google Scholar

[10] M.J.N. Jacobs, J.L.J. Van Dingenen, Ballistic protection mechanisms in personal armour, J. Mater. Sci. 36 (2001) 3137–3142.

Google Scholar

[11] S. Signetti, M. Nicotra, M. Colonna, N.M. Pugno, Modeling and simulation of the impact behavior of soft polymeric-foam-based back protectors for winter sports, J. Sci. Med. Sport. 22 (2019) S65–S70.

DOI: 10.1016/j.jsams.2018.10.007

Google Scholar

[12] T. Børvik, S. Dey, A.H. Clausen, Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles, Int. J. Impact Eng. 36 (2009) 948–964.

DOI: 10.1016/j.ijimpeng.2008.12.003

Google Scholar

[13] R.P. Nair, C.L. Rao, Simulation of depth of penetration during ballistic impact on thick targets using a one-dimensional discrete element model, Sadhana - Acad. Proc. Eng. Sci. 37 (2012) 261–279.

DOI: 10.1007/s12046-012-0079-z

Google Scholar

[14] B.A. Cheeseman, T.A. Bogetti, Ballistic impact into fabric and compliant composite laminates, Compos. Struct. 61 (2003) 161–173.

DOI: 10.1016/s0263-8223(03)00029-1

Google Scholar

[15] M. ming Xu, G. yan Huang, S. shan Feng, X. yu Qin, G.J. McShane, W.J. Stronge, Perforation resistance of aluminum/polyethylene sandwich structure, Mater. Des. 100 (2016) 92–101.

DOI: 10.1016/j.matdes.2016.03.090

Google Scholar

[16] I. Marom, S.R. Bodner, Projectile perforation of multi-layered beams, Int. J. Mech. Sci. 21 (1979) 489–504.

DOI: 10.1016/0020-7403(79)90011-0

Google Scholar

[17] D.W. Zhou, W.J. Stronge, Ballistic limit for oblique impact of thin sandwich panels and spaced plates, Int. J. Impact Eng. 35 (2008) 1339–1354.

DOI: 10.1016/j.ijimpeng.2007.08.004

Google Scholar

[18] E. Palta, H. Fang, D.C. Weggel, Finite element analysis of the Advanced Combat Helmet under various ballistic impacts, Int. J. Impact Eng. 112 (2018) 125–143.

DOI: 10.1016/j.ijimpeng.2017.10.010

Google Scholar

[19] B. Gu, X. Ding, A refined quasi-microstructure model for finite element analysis of three-dimensional braided composites under ballistic penetration, J. Compos. Mater. 39 (2005) 685–710.

DOI: 10.1177/0021998305047264

Google Scholar

[20] N. Kiliç, S. Bedir, A. Erdik, B. Ekici, A. Taşdemirci, M. Güden, Ballistic behavior of high hardness perforated armor plates against 7.62mm armor piercing projectile, Mater. Des. 63 (2014) 427–438.

DOI: 10.1016/j.matdes.2014.06.030

Google Scholar

[21] C.Y. Ma, J.Y.R. Liew, Blast and ballistic resistance of ultra-high strength steel, Int. J. Prot. Struct. 4 (2013) 379–413.

Google Scholar

[22] K. Krishnan, S. Sockalingam, S. Bansal, S.D. Rajan, Numerical simulation of ceramic composite armor subjected to ballistic impact, Compos. Part B Eng. 41 (2010) 583–593.

DOI: 10.1016/j.compositesb.2010.10.001

Google Scholar