Property-Structure Relationship on the Mechanics of Carbon Nanotube Yarns

Article Preview

Abstract:

Carbon nanotube yarns (CNTYs) are twisted hierarchical fibers which exhibit a strong property-structure relationship. Understanding of the property-structure relationship of CNTYs will allow their use in structural and energy dissipation (damping) applications. For this reason, the morphology and structure of dry-spun CNTYs are characterized by means of Raman spectroscopy mapping, atomic force microscopy, and scanning electron microscopy and correlated to their quasi-static and dynamic mechanical properties. The continuous CNTYs present some degree of structural variability, which explains the variability measured in their dynamic mechanical response. Under tension, 42.3 μm diameter (0.71 porosity) CNTYs reach specific strengths of ~0.8 N/tex and ultimate strains ranging from 4% to 7%. Mechanical hysteresis tests under incremental cyclic strain show that the CNTYs exhibits high energy dissipation, which concur with dynamic mechanical analysis (DMA). DMA shows that CNTYs are unconventional materials with high specific stiffness (per unit weight) as well as a very high damping ratio. The damping ratio increases with temperature and reach ~0.6 at 60 °C. The mechanical response of the CNTYs under tension can be explained mainly from changes in the hierarchical structural conformation of the yarn, rather than from changes in the carbon nanotube bond distance or inherent material properties.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1069)

Pages:

69-75

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Miao: Particuology Vol. 11 (2013), p.378.

Google Scholar

[2] Y. Jung, Y.S. Cho, J.W. Lee, J.Y. Oh, and C.R. Park: Compos. Sci. Technol. Vol. 166 (2018), p.95.

Google Scholar

[3] T.S. Gspann, N. Montinaro, A. Pantano, J.A. Elliott, and A.H. Windle: Carbon Vol. 93 (2015), p.1021.

Google Scholar

[4] J.C. Anike, K. Belay, and J.L. Abot: Carbon Vol. 142 (2019), p.491.

Google Scholar

[5] P. Lizák: Fibres Text. East. Eur. Vol. 10 (2002), p.32.

Google Scholar

[6] Y. Zhang, L. Zheng, G. Sun, Z. Zhan, and K. Liao: Carbon Vol. 50 (2012), p.2887.

Google Scholar

[7] J.L. Abot, Y. Song, M.S. Vatsavaya, S. Medikonda, Z. Kier, C. Jayasinghe, et al.: Compos. Sci. Technol. Vol. 70 (2010), p.1113.

Google Scholar

[8] A. Mikhalchan and J.J. Vilatela: Carbon Vol. 150 (2019), p.191.

Google Scholar

[9] Q. Liu, M. Li, Y. Gu, S. Wang, Y. Zhang, Q. Li, et al.: Carbon Vol. 86 (2015), p.46.

Google Scholar

[10] J. Zhao, F. Wang, X. Zhang, L. Liang, X. Yang, Q. Li, et al.: Adv. Eng. Mater. Vol. 20 (2018), p.1.

Google Scholar

[11] X. Zhang, W. Lu, G. Zhou, and Q. Li: Adv. Mater. Vol. 32 (2020), p.1902028.

Google Scholar

[12] C. Jayasinghe, S. Chakrabarti, M.J. Schulz, and V. Shanov: J. Mater. Res. Vol. 26 (2011), p.645.

Google Scholar

[13] L.A. Carlsson, D.F. Adams, and R.B. Pipes: Experimental characterization of advanced composite materials 4ed. (CRC Press, Boca Raton 2014).

Google Scholar

[14] T. Filleter, R. Bernal, S. Li, and H.D. Espinosa: Adv. Mater. Vol. 23 (2011), p.2855.

Google Scholar

[15] A.A. Kuznetsov, A.F. Fonseca, R.H. Baughman, and A.A. Zakhidov: ACS Nano Vol. 5 (2011), p.985.

Google Scholar

[16] M. Miao, J.L. Abot, J.C. Anike, S. Chen, H.M. Duong, G. Hou, et al.: Carbon nanotube fiber and yarns. Production, properties and applications in smart textiles. (Woodhead Publishing Ltd, Cambridge 2019).

Google Scholar

[17] A.C. Ferrari and D.M. Basko: Nat. Nanotechnol. Vol. 8 (2013), p.235.

Google Scholar

[18] R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, and M.S. Dresselhaus: Adv. Phys. Vol. 60 (2011), p.413.

Google Scholar

[19] F. Rosenburg, E. Ionescu, N. Nicoloso, and R. Riedel: Materials Vol. 11 (2018), p.93.

Google Scholar

[20] L.M. Malard, M. A. Pimenta, G. Dresselhaus, and M.S. Dresselhaus: Phys. Rep. Vol. 473 (2009), p.51.

Google Scholar

[21] E. Gao, W. Lu, and Z. Xu: Carbon Vol. 138 (2018), p.134.

Google Scholar

[22] Y. Jung, T. Kim, and C.R. Park: Carbon Vol. 88 (2015), p.60.

Google Scholar

[23] A. Abu Obaid, D. Heider, and J.W. Gillespie: Carbon Vol. 93 (2015), p.731.

Google Scholar

[24] T. Xiao-yan, W. De-jun and X. Hao: Int. J. Fatigue Vol. 11 (1989), p.353.

Google Scholar

[25] F. Ellyin and D. Kujawski: J. Press. Vessel Technol. Vol 106 (1984), p.342.

Google Scholar

[26] X. Yang, P. He, and H. Gao: Nano Res. Vol. 4 (2011), p.1191.

Google Scholar

[27] J. Zhao, X. Zhang, Z. Pan, and Q. Li: Adv. Mater. Interfaces Vol. 2 (2015), p.1500093.

Google Scholar