Rapid Electrochromic Electrode Prepared with Composite Nanorods Using a Two-Stage Hydrothermal Method

Article Preview

Abstract:

A two-stage hydrothermal method was used to prepare rapid-switching electrochromic WO3/ZnO composite electrodes. The morphology of the nanorods was altered by changing the precursor concentration. A higher precursor concentration inhibited the growth of crystals and declined the crystallinity of nanorods. Nanorods with a diameter of 48 nm, height of 92.5 nm, and transmittance greater than 80% were grown when the precursor concentration in the second step was 1.5 times that in the first step. The electrochromic electrode demonstrated rapid coloring and bleaching speeds (5 and 0.8 s, respectively), which were faster than those of the electrode prepared using the one-stage process.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1069)

Pages:

61-67

Citation:

Online since:

August 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.H.A. Tsang, H. Huang, J. Xuan, H. Wang, D.Y.C. Leung, Renewable Sustainable Energy Rev. 120 (2020) 109656.

Google Scholar

[2] A. Karaeva, E Magaril, V Torretta, M Ragazzic, E.C. Rada, Energy Rep. 7 (2021) 137.

Google Scholar

[3] S. Michele, S. Zheng, D. Greaves, Ocean Eng. 245 (2022) 110275.

Google Scholar

[4] Z. Zhang, H. Wang, Y. Zhang, W. Feng, Energy Rep. 8 (2022) 475.

Google Scholar

[5] S. Shan, J Tian, B Chen, Y Zhang, Z Zhou, Energy Convers. Manage. 255 (2022) 115331.

Google Scholar

[6] H. Mahon, D. O'Connor, D. Friedrich, B. Hughes, Energy 239 (2022) 122207.

Google Scholar

[7] G.T. Phan, D.V. Pham, R.A. Patil, C.-H. Tsai, C.-C. Lai, W.-C. Yeh, Y. Liou, Y.-R. Ma, Sol. Energy Mater. Sol. Cells 231 (2021) 111306.

Google Scholar

[8] J.-J. Huang, C.-S. Huang, Y.-R. Ho, Y.-Q. Wu, Mater. Lett. 303 (2021) 130479.

Google Scholar

[9] S. Yu, X. Ma, X. Li, J. Li, B. Gong, X. Wang, Opt. Mater. 120 (2021) 111414.

Google Scholar

[10] S. Wang, H. Xu, T. Hao, M. Xu, J. Xue, J. Zhao, Y. Li, Appl. Surf. Sci. 577 (2022) 151889.

Google Scholar

[11] Z. Liu, Yang, G. Leftheriotis, H. Huang, Y. Xia, Y. Gan, W. Zhang, J. Zhang, Sustainable Mater. Technol. 31 (2022) e00372.

Google Scholar

[12] C.Y. Jeong, T. Kubota, K. Tajima, M. Kitamura, H. Imai, Mater. Chem. Phys. 277 (2022) 125460.

Google Scholar

[13] R. Goei, A.J. Ong, T.J. Hao, L.J. Yi, L.S. Kuang, D. Mandler, S. Magdassi, A.I.Y. Tok, Ceram. Int. 47 (2021) 18433.

DOI: 10.1016/j.ceramint.2021.03.167

Google Scholar

[14] M.A.K. Purbayanto, E. Nurfani, M.A. Naradipa, R. Widita, A. Rusydi, Y. Darma, Opt. Mater. 108 (2020) 110418.

DOI: 10.1016/j.optmat.2020.110418

Google Scholar

[15] X. Huang, J. Song, L. Wang, X. Gu, Y. Zhao, Y. Qiang, Mater. Sci. Semicond. Process. 97 (2019) 106.

Google Scholar

[16] H.J. Biswal, T. Srivastava, P.R. Vundavilli, A. Gupta, J. Manuf. Processes 75 (2022) 538.

Google Scholar

[17] K. Mosalagae, D.M. Murape, L.M. Lepodise, Heliyon 6 (2020) e04458.

Google Scholar

[18] B. Seddik, B. Salima, G. Houda, Mater. Today Commun. 29 (2021) 102805.

Google Scholar

[19] S.-H. Yang, J.-H. Yang, Vacuum 179 (2020) 109460.

Google Scholar

[20] S.-H. Yang, J.-H. Yang, Z.-Y. Chen, C.-C. Ho, J. Alloys Compd. 882 (2021) 160762.

Google Scholar

[21] S.-H. Yang, G.-Y. Tseng, C.-F. Kao, J. Electrochem. Soc. 166 (2019) H70.

Google Scholar