Hemp Shives Mycelium Composites - An Alternative Material for Traditionally Used Plastic Packaging

Article Preview

Abstract:

Plastic waste is an ever-growing concern, causing harm to many ecological and human health aspects, one of the major contributors to this problem being packaging. Mycelium composites (MC) are ecologically safe materials, well suited for the short-life usage as packaging materials. In our study we made MC using fine and coarse granulometry hemp shives applying them in 3 substrate variants – with added bran, with added bran and birch bark, and as the sole substrate. We assessed material's water absorption and mechanical properties, chemical decomposition, biodegradability, mold resistance and fungal biomass. Granulometric effect was observed only when using shives as the sole substrate, where larger particle size gave poorer results. Bran did not significantly improve mechanical properties or water uptake. Bark reduced water uptake by ~200 %, but lowered mechanical properties, and provided no benefits to mold resistance which was low for all specimens. Overall, hemp MC showed complete biodegradability after 12 weeks, mechanical properties up to 0,235 MPa, compatible with expanded polystyrene, but very high water uptake of up to 1000 %. Future studies are needed to reduce water absorption and improve mold resistance, as well as invent consensus methodology for better cross-study comparison.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1071)

Pages:

126-138

Citation:

Online since:

October 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. C. Gibb, Plastics are forever, Nature Chemistry, 2019, Vol 11, 394-395.

Google Scholar

[2] R. Geyer, J. R. Jambeck, K. L. Law, Production, use, and fate of all plastics ever made, Science Advances, 2017, Vol 3, 7.

DOI: 10.1126/sciadv.1700782

Google Scholar

[3] A. Chamas, H. Moon, J. Zheng, Y. Qiu, T. Tabassum, J. H. Jang, M. Abu-Omar, S. L. Scott, S. Suh, Degradation Rates of Plastics in the Environment, ACS Sustainable Chemistry & Engineering, 2020, 8(9), 3494-3511.

DOI: 10.1021/acssuschemeng.9b06635

Google Scholar

[4] S. M. Al-Salem, P. Lettieri, J. Baeyens, Recycling and recovery routes of plastic solid waste (PSW): A review, Science Direct, 2009, 29(10), 2625-2643.

DOI: 10.1016/j.wasman.2009.06.004

Google Scholar

[5] H. Alhazmi, F. H. Almansour, Z. Aldhafeeri Plastic Waste Management: A Review of Existing Life Cycle Assessment Studies, sustainability, 2021, 13, 5304.

DOI: 10.3390/su13105340

Google Scholar

[6] A. L. Andrady, Microplastics in the marine environment, Marine Pollution Bulletin, 2011, 62(8), 1596-1605.

DOI: 10.1016/j.marpolbul.2011.05.030

Google Scholar

[7] K. Pozo, W. Urbina, V. Gómez, M. Torres, D. Nuñez, P. Přibylová, O. Audy, B. Clarke, A. Arias, N. Tombesi, Y. Guida, J. Klánová, Persistent organic pollutants sorbed in plastic resin pellet — Nurdles, from coastal areas of Central Chile, Marine Pollution Bulletin, 2020, Vol 151, 110786.

DOI: 10.1016/j.marpolbul.2019.110786

Google Scholar

[8] More information: https://sdgs.un.org/goals.

Google Scholar

[9] M. Jones, T. Bhat, T. Huynh, E. Kandare, R. Yuen, C. H. Wang, S. John, Waste-derived low-cost mycelium composite construction materials with improved fire safety, Fire and Materials, 2018, (42) 816-825.

DOI: 10.1002/fam.2637

Google Scholar

[10] Z. Zimele, I. Irbe, J. Grinins, O. Bikovens, A. Verovkins, D. Bajare, Novel Mycelium-Based Biocomposites (MBB) as Building Materials, Journal of Renewable Materials, 2020, 8(9), 1067-1076.

DOI: 10.32604/jrm.2020.09646

Google Scholar

[11] E. Elsacker, S. Vandelook, J. Brancart, E. Peeters, L. De Laet, Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates, Plos One, 2019, 14, 7.

DOI: 10.1371/journal.pone.0213954

Google Scholar

[12] N. Attias, O. Danai, T. Abitbol, E. Tarazi, N. Ezov, I. Pereman, Y. J. Grobman, Mycelium bio-composites in industrial design and architecture: Comparative review and experimental analysis, Journal of Cleaner Production, Vol 246, 2020, 119037.

DOI: 10.1016/j.jclepro.2019.119037

Google Scholar

[13] F. V.W. Appels, S. Camere, M. Montalti, E. Karana, K. M.B. Jansens, J. Dijksterhuis, P. Krijgsheld, H. A.B. Wösten, Fabrication factors influencing mechanical, moisture- and water-related properties of mycelium-based composites, Materials & Design, Vol 161, 2019, 64-71.

DOI: 10.1016/j.matdes.2018.11.027

Google Scholar

[14] F. V.W. Appels, J. Dijksterhuis, Lukasiewicz C.E., K. M.B. Jansen, H. A.B. Wösten, P. Krijgsheld, Hydrophobin gene deletion and environmental growth conditions impact mechanical properties of mycelium by affecting the density of the material, Scientific Reports, 8, 4703.

DOI: 10.1038/s41598-018-23171-2

Google Scholar

[15] W. Sun, M. Tajvidi, C. G. Hunt, G. McIntyre, D. J. Gardner, Fully Bio-Based Hybrid Composites Made of Wood, Fungal Mycelium and Cellulose Nanofibrils, Scientific Reports, 2019, (9) 3766.

DOI: 10.1038/s41598-019-40442-8

Google Scholar

[16] More information: https://zeltabele.mozello.lv/produkti/.

Google Scholar

[17] D. C. Sauder, C. E. DeMars, An Updated Recommendation for Multiple Comparisons. Advances in Methods and Practices in Psychological Science, 2019, 2(1), 26-44.

DOI: 10.1177/2515245918808784

Google Scholar

[18] J. Rizikovs, A. Paze, A. Plavniece, K. Stankus, I. Virsis, A novel method for birch outer bark quality control using higher heating value, Proceedings of the 11th International Scientific and Practical Conference, 2017, (3) 282-285.

DOI: 10.17770/etr2017vol3.2550

Google Scholar

[19] I. Makarov, M. Vinogradov, T. Gromovykh, S. Lutsenko, N. Feldman, G. Shambilova, V. Sadykova, Antifungal Composite Fibers Based on Cellulose and Betulin, Fibers, 2018, (6) 23.

DOI: 10.3390/fib6020023

Google Scholar

[20] I. Irbe, J. Grinins, Z. Zimele, Wood composites vs mycelium composites – water absorbtion and mould growth properties, 9th Hardwood Conference Proceedings., 2020, 9 (1) 121-127.

Google Scholar

[21] M. Jones, A. Mautner, S. Luenco, A. Bismarck, S. John, Engineered mycelium composite construction materials from fungal biorefineries: A critical review, Materials & Design, 2020, Vol 187, 108397.

DOI: 10.1016/j.matdes.2019.108397

Google Scholar

[22] Y. Jiang, M. Lawrence, M. P. Ansell, A. Hussain, Cell wall microstructure, pore size distribution and absolute density of hemp shiv. Royal Society Open Science, 2018, (5), 171 945.

DOI: 10.1098/rsos.171945

Google Scholar

[23] I. Y. Gnip, V. Kersulis, S. Vejelis, S. Vaitkus, Water absorption of expanded polystyrene boards, Polymer Testing, 2006, 5, 635-641.

DOI: 10.1016/j.polymertesting.2006.04.002

Google Scholar

[24] J. Graça, Suberin: The biopolyester at the frontier of plants, Frontiers of Chemistry, 2015, 3, 62.

Google Scholar

[25] R. L. Gautam, R. Naraian, Trichoderma, a Factory of Multipurpose Enzymes: Cloning of Enzymatic Genes. Fungal Biotechnology and Bioengineering, 2020, 137-162.

DOI: 10.1007/978-3-030-41870-0_5

Google Scholar

[26] Y. Zhang, B. Tang, G. Du, Production of Cellulases by Rhizopus stolonifer from Glucose-Containing Media Based on the Regulation of Transcriptional Regulator CRE, Journal of Microbiology and Biotechnology, 2017, 27(3), 514-523.

DOI: 10.4014/jmb.1608.08048

Google Scholar

[27] S. Rogawansamy, S. Gaskin, M. Taylor, D. Pisaniello, An Evaluation of Antifungal Agents for the Treatment of Fungal Contamination in Indoor Air Environments, International Journal of Environmental Research and Public Health, 2015, 12, 6319-6332.

DOI: 10.3390/ijerph120606319

Google Scholar

[28] C. J. Rabie, A. Lübben, M. A.A. Schipper, F. R.van Heerden, J. E. Fincham, Toxigenicity of Rhizopus species, International Journal of Food Microbiology, 1985, 1(5), 263-270.

DOI: 10.1016/0168-1605(85)90018-2

Google Scholar

[29] J. Jennessen, K. F. Nielsen, J. Houbraken, E. K. Lyhne, J. Schnürer, J. C. Frisvad, A. A. Sams, Secondary Metabolite and Mycotoxin Production by the Rhizopus microsporus Group, Journal of Agricultural and Food Chemistry, 2005, 55, 1833-1840.

DOI: 10.1021/jf048147n

Google Scholar

[30] M. M.A. Mansour, M. Z.M. Salem, R. R.A Hassan, H.M. Ali, F. Al, M. S. Elshikh, Antifungal potential of three natural oils and their effects on the thermogravimetric and chromatic behaviors when applied to historical paper and various commercial paper sheets, BioResources, 16(1), 492-514.

DOI: 10.15376/biores.16.1.492-514

Google Scholar

[31] W. Yingprasert, N. Matan, N. Matan, Effects of surface treatment with cinnamon oil and clove oil on mold resistance and physical properties of rubberwood particleboards, Europeen Journal of Wood and Wood Products, 2014, 73, 103-109.

DOI: 10.1007/s00107-014-0857-x

Google Scholar

[32] J.N.V. Latha, P. N. Babu, P. Rakesh, K. A. Kumar, M. Anupama, L. Susheela, Fungal Cell Walls as Protective Barriers for Toxic Metals, Advances in Medicine and Biology, Vol 53.

Google Scholar

[33] T. Mester, E. Varela, M. Tien, Wood degradation by Brown-Rot and White-Rot Fungi, Genetics and Biotechnology, 2004, MYCOTA, Vol 2, 355-368.

DOI: 10.1007/978-3-662-07426-8_17

Google Scholar

[34] R.C. Babu, H. Ketanapalli, S.K. Beebi, V.C. Kolluru, Wheat Bran – Composition and Nutritional Quality: A Review. Advances in Biotechnology & Microbiology, 2018, Vol 9, Issue 1.

Google Scholar

[35] G. M. Walker, N. A. White, Introduction to Fungal Physiology, Fungi: Biology and Applications, 3rd edition, (2018).

Google Scholar

[36] https://www.northwestfoam.com/eps-specs-physical-properties.php.html.

Google Scholar