A Study on Waste Paper Reinforced Recycled Polypropylene Biocomposite

Article Preview

Abstract:

The growing global request to make green materials nowadays expresses in reducing environmental problems and obtaining biomaterials with high-performed properties. Aside from being carbon neutral, the use of biomass for obtaining green materials contributes to energy security and climate change mitigation. The aim of the work was to fabricate and study a recycled polypropylene-based composite filled with recycled waste paper obtained by the acid hydrolysis of de-inked newsprint. It has been found that, with increasing the content of the recycled paper microparticles in the bio-composite, its mechanical and wetting properties deteriorated. The presence of maleic anhydride grafted polypropylene as a compatibilizer increased the homogeneity of the structure of the bio-composite, which improved its mechanical properties and decreased its ability to be wetted with water.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1071)

Pages:

109-116

Citation:

Online since:

October 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.K. Najafi, Use of recycled plastics in wood plastic composites - A review, Waste Management. 33 (2013) 1898-1905.

DOI: 10.1016/j.wasman.2013.05.017

Google Scholar

[2] I. Turku, T. Kärki, A. Puurtinen, Durability of wood plastic composites manufactured from recycled plastic, Heliyon. 4(3) (2018) e00559.

DOI: 10.1016/j.heliyon.2018.e00559

Google Scholar

[3] A.M. Adel, Z.H. Abd El-Wahab, A.A. Ibrahim, M.T. Al-Shemy, Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Physicochemical properties, Carbohydrate Polymers. 83(2) (2011) 676-687.

DOI: 10.1016/j.carbpol.2010.08.039

Google Scholar

[4] M. El-Sakhawy, M.L. Hassan, Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues, Carbohydrate Polymers. 67(1, 2) (2007) 1-10.

DOI: 10.1016/j.carbpol.2006.04.009

Google Scholar

[5] G. Joshi, S. Naithani, V.K. Varshney, S.S. Bisht, V. Rana, P.K. Gupta, Synthesis and Characterization of Carboxymethyl Cellulose from Office Waste Paper: A Greener Approach Towards Waste Management, Waste Management. 38(1) (2015) 33-40.

DOI: 10.1016/j.wasman.2014.11.015

Google Scholar

[6] D. Trache, M.H. Hussin, C.T.H. Chuin, S. Sabar, M.R.N. Fazita, O.F.A. Taiwo, T. M. Hassan, M.K.M. Haafiz. Microcrystalline cellulose: Isolation, characterization and bio-composites application - A review. Int J Biol Macromol. 93 (2016) 789-804.

DOI: 10.1016/j.ijbiomac.2016.09.056

Google Scholar

[7] H. Håkansson, P. Ahlgren, Acid hydrolysis of some industrial pulps: Effect of hydrolysis conditions and raw material, Cellulose. 12(2) (2005) 177-183.

DOI: 10.1007/s10570-004-1038-6

Google Scholar

[8] M. Maskavs, M. Kalnins, M. Laka, S. Chernyavskaya, Physicomechanical Properties of Composites Based on Low-Density Polyethylene and Cellulose-Containing Fillers, Mechanics of Composite Materials. 37(2) (2001) 159-166.

DOI: 10.1023/a:1010677704586

Google Scholar

[9] A. Ashori, A. Nourbakhsh, Performance properties of microcrystalline cellulose as a reinforcing agent in wood-plastic composites, Composites: Part B. 41 (2010) 578-581.

DOI: 10.1016/j.compositesb.2010.05.004

Google Scholar

[10] M. Laka, S. Chernyavskaya, G. Shulga, V. Shapovalov, A. Valenkov, M. Tavroginsakya, Use of Cellulose-Containing Fillers in Composites with Polypropylene, Materials Science (Medžiagotyra). 17(2) (2011) 151-154.

DOI: 10.5755/j01.ms.17.2.484

Google Scholar

[11] A. M. Youssefa, M. S. Hasaninb, M. E. Abd El-Azizc, O. M. Darweshd. Green, economic, and partially biodegradable wood plastic composites via enzymatic surface modification of lignocellulosic fibers. Heliyon, 5 (3), 2019, eO1332.

DOI: 10.1016/j.heliyon.2019.e01332

Google Scholar

[12] F.P. La Mantia, M. Morreale, Green composites: A brief review. Composites: Part A: Applied Science and Manufacturing Composites. 42(6) (2011) 579-588.

DOI: 10.1016/j.compositesa.2011.01.017

Google Scholar

[13] J.Z. Lu, Q. Wu, H.S. McNab, Chemical coupling in wood fiber and polymer composites: a review of coupling agents and treatments, Wood Fiber and Science. 32(1) (2000) 88-104.

Google Scholar

[14] M.M. Kabir, H. Wang, K. T. Lau, F. Cardona, Chemical treatments on plant-based natural fiber reinforced polymer composites: an overview. Composites: Part B Engineering. 43(7) (2012) 2883-2892.

DOI: 10.1016/j.compositesb.2012.04.053

Google Scholar

[15] J. Jaunslavietis, J. Ozolins, M. Kalnins, G. Shulga, B. Neiberte, A. Verovkins, Recycled paper additive for wood-polymer composite: preparation and characterization, Key Engineering Materials. 850 (2020) 81-86.

DOI: 10.4028/www.scientific.net/kem.850.81

Google Scholar

[16] Z. Lin, C. Chen, Z. Guan, S. Tan, X. Zhang, A compatibilized composite of recycled polypropylene filled with cellulosic fiber from recycled corrugated paper board: mechanical properties, morphology, and thermal behavior, J Appl Polym Sci. 122 (2011) 2789-2797.

DOI: 10.1002/app.34321

Google Scholar

[17] X. Zhang, J. Shen, H. Yang, Z. Lin, S. Tan. Mechanical properties, morphology, thermal performance, crystallization behavior, and kinetics of PP/microcrystal cellulose composites compatibilized by two different compatibilizers. J Thermoplast Compos Mater. 24 (2011) 735-753.

DOI: 10.1177/0892705711403527

Google Scholar