Laser Cladding of Titanium Alloy Coating on Low Carbon Steel via Cu Interlayer

Article Preview

Abstract:

Preparation of titanium alloy coating on the low carbon steel surface is an effective way to ensure the service performance of steel in marine environment. In this work, the effect of Cu interlayer thickness on the microstructure and properties of the titanium alloy coating was systematically studied. The results showed that a thin Cu interlayer cannot inhibit the diffusion of iron, and the Fe-Ti intermetallic compound (IMC) layer at the coating/substrate interface weakens the bonding property of the coating. And iron compounds on the surface of the coating surface are negative for corrosion resistance. The thickening of Cu interlayer inhibits the diffusion of iron and increases the shear strength of the coating by 40%~60%. When the iron compound is not present on the coating surface, the optimal electrochemical properties of the titanium alloy coating were achieved. However, the excessive thickness of the Cu interlayer will accelerate the heat loss of the molten pool and lead to the fusion defect in the initial cladding stage. In this study, the optimum thickness range of Cu interlayer (290μm ~ 375μm) was obtained. When the interlayer was in this range, titanium alloy coatings with excellent comprehensive properties could be prepared.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1071)

Pages:

80-90

Citation:

Online since:

October 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.R. Wang, W. Qi, X.L. Zhang, X. Yang, L. Xie, D.Y. Li, Y.H. Xiang, Superior Corrosion Resistance-dependent Laser Energy Density in (CoCrFeNi)95Nb5 High Entropy Alloy Coating Fabricated by Laser Cladding, Int. J. Miner. Metall. Mater. 28 (2021) 888-897.

DOI: 10.1007/s12613-020-2238-2

Google Scholar

[2] S.S. Dong, Y.L. Sun, Upgrading Path and Value Chain Upgrading Strategy of China's Marine Equipment Manufacturing Industry, J. Coastal Res. 107 (2020) 157-160.

DOI: 10.2112/jcr-si107-040.1

Google Scholar

[3] A.S. Oryshchenko, V.P. Leonov, V.I. Mikhailov, P. Kuznetsov, A.V. Alexandrov, Titanium in Shipbuilding and Other Technical Applications, in: The 14th World Conference on Titanium, Nantes, 321 (2020) 02011.

Google Scholar

[4] I.V. Gorynin, Titanium Alloys for Marine Application, Mat. Sci. Eng. A 263 (1999) 112-116.

Google Scholar

[5] S. Paul, R. Mondal, Prediction and Computation of Corrosion Rates of A36 Mild Steel in Oilfield Seawater, J. Mater. Eng. Perform. 27 (2018) 3174-3183.

DOI: 10.1007/s11665-018-3385-8

Google Scholar

[6] T. Tüken, B. Yazıcı, M. Erbil, A New Multilayer Coating for Mild Steel Protection, Prog. Org. Coat. 50 (2004) 115-122.

DOI: 10.1016/j.porgcoat.2004.01.002

Google Scholar

[7] X. Li, X. Wang, L. Wang, Y. Sun, B. Zhang, H. Li, Y. Huang, B. Hou, Corrosion Behavior of Q235 Steel in Atmospheres Containing SO2 and NaCl, J. Mater. Eng. Perform. 28 (2019) 2327-2334.

DOI: 10.1007/s11665-019-03984-6

Google Scholar

[8] S.P. Vinodhini, J.R. Xavier, Evaluation of Corrosion Protection Performance and Mechanical Properties of Epoxy-triazole/Graphene Oxide Nanocomposite Coatings on Mild Steel, J. Mater. Sci. 56 (2021) 7094-7110.

DOI: 10.1007/s10853-020-05636-w

Google Scholar

[9] H.C. Chen, G. Bi, B.Y. Lee, C.K. Cheng, Laser Welding of CP Ti to Stainless Steel with Different Temporal Pulse Shapes, J. Mater. Process. Tech. 231 (2016) 58-65.

DOI: 10.1016/j.jmatprotec.2015.12.016

Google Scholar

[10] Y. Zhang, D. Sun, X. Gu, H. Li, Strength Improvement and Interface Characteristic of Direct Laser Welded Ti Alloy/Stainless Steel Joint, Mater. Lett. 231 (2018) 31-34.

DOI: 10.1016/j.matlet.2018.08.014

Google Scholar

[11] S. Chen, M. Zhang, J. Huang, C. Cui, H. Zhang, X. Zhao, Microstructures and Mechanical Property of Laser Butt Welding of Titanium Alloy to Stainless Steel, Mater. Design 53 (2014) 504-511.

DOI: 10.1016/j.matdes.2013.07.044

Google Scholar

[12] Q. Chu, X. Tong, S. Xu, M. Zhang, J. Li, F. Yan, C. Yan, Interfacial Investigation of Explosion-Welded Titanium/Steel Bimetallic Plates, J. Mater. Eng. Perform. 29 (2020) 78-86.

DOI: 10.1007/s11665-019-04535-9

Google Scholar

[13] D.H. Yang, Z.A. Luo, G.M. Xie, R.D.K. Misra, Effect of Interfacial Compounds on Mechanical Properties of Titanium–Steel Vacuum Roll-Cladding Plates, Mater. Sci. Tech. 34 (2018) 1700-1709.

DOI: 10.1080/02670836.2018.1472911

Google Scholar

[14] Z. Zhao, N.U.H. Tariq, J. Tang, Y. Ren, H. Liu, M. Tong, L. Yin, H. Du, J. Wang, T. Xiong, Influence of Annealing on the Microstructure and Mechanical Properties of Ti/Steel Clad Plates Fabricated via Cold Spray Additive Manufacturing and Hot-rolling, Mat. Sci. Eng. A 775 (2020) 138968.

DOI: 10.1016/j.msea.2020.138968

Google Scholar

[15] M.M. Quazi, M. Ishak, M.A. Fazal, A. Arslan, S. Rubaiee, A. Qaban, M.H. Aiman, T. Sultan, M.M. Ali, S.M. Manladan, Current Research and Development Status of Dissimilar Materials Laser Welding of Titanium and Its Alloys, Opt. Laser Technol. 126 (2020) 106090.

DOI: 10.1016/j.optlastec.2020.106090

Google Scholar

[16] I. Tomashchuk, P. Sallamand, Metallurgical Strategies for the Joining of Titanium Alloys with Steels, Adv. Eng. Mater. 20 (2018) 1700764.

DOI: 10.1002/adem.201700764

Google Scholar

[17] J. Li, Y. Liu, Y. Gao, P. Jin, Q. Sun, J. Feng, Benefits of Interfacial Regulation with Interlayers in Laser Welding Ti6Al4V/316L Steel, Opt. Laser Technol. 125 (2020) 106007.

DOI: 10.1016/j.optlastec.2019.106007

Google Scholar

[18] Y. Zhang, D.Q. Sun, X.Y. Gu, Y.J. Liu, Nd/YAG Pulsed Laser Welding of TC4 Titanium Alloy to 301L Stainless Steel via Pure Copper Interlayer, INT. J. Adv. Manuf. Tech. 90 (2017) 953-961.

DOI: 10.1007/s00170-016-9453-z

Google Scholar

[19] I. Tomashchuk, P. Sallamand, N. Belyavina, M. Pilloz, Evolution of Microstructures and Mechanical Properties during Dissimilar Electron Beam Welding of Titanium Alloy to Stainless Steel via Copper Interlayer, Mat. Sci. Eng. A 585 (2013) 114-122.

DOI: 10.1016/j.msea.2013.07.050

Google Scholar

[20] Y. Zhang, D. Sun, X. Gu, H. Li, Characterization of Laser-Welded Ti Alloy and Stainless Steel Joint Using Cu Interlayer, J. Mater. Eng. Perform. 28 (2019) 6092-6101.

DOI: 10.1007/s11665-019-04319-1

Google Scholar

[21] J. Li, Y. Liu, Z. Zhen, P. Jin, J. Feng, Weld Formation Mechanism and Microstructural Evolution of TC4/304 Stainless Steel Joint with Cu-Based Filler Wire and Preheating, Materials 12 (2019) 3071.

DOI: 10.3390/ma12193071

Google Scholar

[22] L. Zhu, P. Xue, Q. Lan, G. Meng, Y. Ren, Z. Yang, P. Xu, Z. Liu, Recent Research and Development Status of Laser Cladding: A review, Opt. Laser Technol. 138 (2021) 106915.

DOI: 10.1016/j.optlastec.2021.106915

Google Scholar

[23] F. Weng, C. Chen, H. Yu, Research Status of Laser Cladding on Titanium and Its Alloys: A review, Mater. Design 58 (2014) 412-425.

DOI: 10.1016/j.matdes.2014.01.077

Google Scholar

[24] J. Sampedro, I. Pérez, B. Carcel, J.A. Ramos, V. Amigó, Laser Cladding of TiC for Better Titanium Components, Phys. Procedia 12 (2011) 313-322.

DOI: 10.1016/j.phpro.2011.03.040

Google Scholar

[25] J.J. Candel, V. Amigó, J.A. Ramos, D. Busquets, Sliding Wear Resistance of TiC Reinforced Titanium Composite Coating Produced by Laser Cladding, Surf. Coat. Tech. 204 (2010) 3161-3166.

DOI: 10.1016/j.surfcoat.2010.02.070

Google Scholar

[26] A. Emamian, S.F. Corbin, A. Khajepour, Effect of Laser Cladding Process Parameters on Clad Quality and In-situ Formed Microstructure of Fe–TiC Composite Coatings, Surf. Coat. Tech. 205 (2010) 2007-2015.

DOI: 10.1016/j.surfcoat.2010.08.087

Google Scholar

[27] A. Emamian, S.F. Corbin, A. Khajepour, The Influence of Combined Laser Parameters on In-situ Formed TiC Morphology during Laser Cladding, Surf. Coat. Tech. 206 (2011) 124-131.

DOI: 10.1016/j.surfcoat.2011.06.062

Google Scholar

[28] K. Li, D. Li, D. Liu, G. Pei, L. Sun, Microstructure Evolution and Mechanical Properties of Multiple-Layer Laser Cladding Coating of 308L Stainless Steel, Appl. Surf. Sci. 340 (2015) 143-150.

DOI: 10.1016/j.apsusc.2015.02.171

Google Scholar

[29] H. Paydas, A. Mertens, R. Carrus, J.L. Beckers, J.T. Tchuindjang, Laser Cladding as Repair Technology for Ti6Al4V Alloy: Influence of Building Strategy on Microstructure and Hardness, Mater. Design 85 (2015) 497-510.

DOI: 10.1016/j.matdes.2015.07.035

Google Scholar

[30] N. Poondla, T.S. Srivatsan, A. Patnaik, M. Petraroli, A Study of the Microstructure and Hardness of Two Titanium Alloys: Commercially Pure and Ti–6Al–4V, J. Alloy. Compd. 486 (2009) 162-167.

DOI: 10.1016/j.jallcom.2009.06.172

Google Scholar

[31] M. Gao, C. Chen, L. Wang, Z. Wang, X. Zeng, Laser-Arc Hybrid Welding of Dissimilar Titanium Alloy and Stainless Steel Using Copper Wire, Metall. Mater. Trans. A 46 (2015) 2007-2020.

DOI: 10.1007/s11661-015-2798-3

Google Scholar

[32] D.A. Fischer, I.T. Vargas, G.E. Pizarro, F. Armijo, M. Walczak, The Effect of Scan Rate on the Precision of Determining Corrosion Current by Tafel Extrapolation: A Numerical Study on the Example of Pure Cu in Chloride Containing Medium, Electrochim. Acta. 313 (2019) 457-467.

DOI: 10.1016/j.electacta.2019.04.064

Google Scholar

[33] L. Jiang, X. Cui, G. Jin, H. Tian, Z. Tian, X. Zhang, S. Wan, Synthesis and Microstructure, Properties Characterization of Ni-Ti-Cu/Cu-Al Functionally Graded Coating on Mg-Li alloy by Laser Cladding, Appl. Surf. Sci. 575 (2022) 151645.

DOI: 10.1016/j.apsusc.2021.151645

Google Scholar