[1]
W.R. Wang, W. Qi, X.L. Zhang, X. Yang, L. Xie, D.Y. Li, Y.H. Xiang, Superior Corrosion Resistance-dependent Laser Energy Density in (CoCrFeNi)95Nb5 High Entropy Alloy Coating Fabricated by Laser Cladding, Int. J. Miner. Metall. Mater. 28 (2021) 888-897.
DOI: 10.1007/s12613-020-2238-2
Google Scholar
[2]
S.S. Dong, Y.L. Sun, Upgrading Path and Value Chain Upgrading Strategy of China's Marine Equipment Manufacturing Industry, J. Coastal Res. 107 (2020) 157-160.
DOI: 10.2112/jcr-si107-040.1
Google Scholar
[3]
A.S. Oryshchenko, V.P. Leonov, V.I. Mikhailov, P. Kuznetsov, A.V. Alexandrov, Titanium in Shipbuilding and Other Technical Applications, in: The 14th World Conference on Titanium, Nantes, 321 (2020) 02011.
Google Scholar
[4]
I.V. Gorynin, Titanium Alloys for Marine Application, Mat. Sci. Eng. A 263 (1999) 112-116.
Google Scholar
[5]
S. Paul, R. Mondal, Prediction and Computation of Corrosion Rates of A36 Mild Steel in Oilfield Seawater, J. Mater. Eng. Perform. 27 (2018) 3174-3183.
DOI: 10.1007/s11665-018-3385-8
Google Scholar
[6]
T. Tüken, B. Yazıcı, M. Erbil, A New Multilayer Coating for Mild Steel Protection, Prog. Org. Coat. 50 (2004) 115-122.
DOI: 10.1016/j.porgcoat.2004.01.002
Google Scholar
[7]
X. Li, X. Wang, L. Wang, Y. Sun, B. Zhang, H. Li, Y. Huang, B. Hou, Corrosion Behavior of Q235 Steel in Atmospheres Containing SO2 and NaCl, J. Mater. Eng. Perform. 28 (2019) 2327-2334.
DOI: 10.1007/s11665-019-03984-6
Google Scholar
[8]
S.P. Vinodhini, J.R. Xavier, Evaluation of Corrosion Protection Performance and Mechanical Properties of Epoxy-triazole/Graphene Oxide Nanocomposite Coatings on Mild Steel, J. Mater. Sci. 56 (2021) 7094-7110.
DOI: 10.1007/s10853-020-05636-w
Google Scholar
[9]
H.C. Chen, G. Bi, B.Y. Lee, C.K. Cheng, Laser Welding of CP Ti to Stainless Steel with Different Temporal Pulse Shapes, J. Mater. Process. Tech. 231 (2016) 58-65.
DOI: 10.1016/j.jmatprotec.2015.12.016
Google Scholar
[10]
Y. Zhang, D. Sun, X. Gu, H. Li, Strength Improvement and Interface Characteristic of Direct Laser Welded Ti Alloy/Stainless Steel Joint, Mater. Lett. 231 (2018) 31-34.
DOI: 10.1016/j.matlet.2018.08.014
Google Scholar
[11]
S. Chen, M. Zhang, J. Huang, C. Cui, H. Zhang, X. Zhao, Microstructures and Mechanical Property of Laser Butt Welding of Titanium Alloy to Stainless Steel, Mater. Design 53 (2014) 504-511.
DOI: 10.1016/j.matdes.2013.07.044
Google Scholar
[12]
Q. Chu, X. Tong, S. Xu, M. Zhang, J. Li, F. Yan, C. Yan, Interfacial Investigation of Explosion-Welded Titanium/Steel Bimetallic Plates, J. Mater. Eng. Perform. 29 (2020) 78-86.
DOI: 10.1007/s11665-019-04535-9
Google Scholar
[13]
D.H. Yang, Z.A. Luo, G.M. Xie, R.D.K. Misra, Effect of Interfacial Compounds on Mechanical Properties of Titanium–Steel Vacuum Roll-Cladding Plates, Mater. Sci. Tech. 34 (2018) 1700-1709.
DOI: 10.1080/02670836.2018.1472911
Google Scholar
[14]
Z. Zhao, N.U.H. Tariq, J. Tang, Y. Ren, H. Liu, M. Tong, L. Yin, H. Du, J. Wang, T. Xiong, Influence of Annealing on the Microstructure and Mechanical Properties of Ti/Steel Clad Plates Fabricated via Cold Spray Additive Manufacturing and Hot-rolling, Mat. Sci. Eng. A 775 (2020) 138968.
DOI: 10.1016/j.msea.2020.138968
Google Scholar
[15]
M.M. Quazi, M. Ishak, M.A. Fazal, A. Arslan, S. Rubaiee, A. Qaban, M.H. Aiman, T. Sultan, M.M. Ali, S.M. Manladan, Current Research and Development Status of Dissimilar Materials Laser Welding of Titanium and Its Alloys, Opt. Laser Technol. 126 (2020) 106090.
DOI: 10.1016/j.optlastec.2020.106090
Google Scholar
[16]
I. Tomashchuk, P. Sallamand, Metallurgical Strategies for the Joining of Titanium Alloys with Steels, Adv. Eng. Mater. 20 (2018) 1700764.
DOI: 10.1002/adem.201700764
Google Scholar
[17]
J. Li, Y. Liu, Y. Gao, P. Jin, Q. Sun, J. Feng, Benefits of Interfacial Regulation with Interlayers in Laser Welding Ti6Al4V/316L Steel, Opt. Laser Technol. 125 (2020) 106007.
DOI: 10.1016/j.optlastec.2019.106007
Google Scholar
[18]
Y. Zhang, D.Q. Sun, X.Y. Gu, Y.J. Liu, Nd/YAG Pulsed Laser Welding of TC4 Titanium Alloy to 301L Stainless Steel via Pure Copper Interlayer, INT. J. Adv. Manuf. Tech. 90 (2017) 953-961.
DOI: 10.1007/s00170-016-9453-z
Google Scholar
[19]
I. Tomashchuk, P. Sallamand, N. Belyavina, M. Pilloz, Evolution of Microstructures and Mechanical Properties during Dissimilar Electron Beam Welding of Titanium Alloy to Stainless Steel via Copper Interlayer, Mat. Sci. Eng. A 585 (2013) 114-122.
DOI: 10.1016/j.msea.2013.07.050
Google Scholar
[20]
Y. Zhang, D. Sun, X. Gu, H. Li, Characterization of Laser-Welded Ti Alloy and Stainless Steel Joint Using Cu Interlayer, J. Mater. Eng. Perform. 28 (2019) 6092-6101.
DOI: 10.1007/s11665-019-04319-1
Google Scholar
[21]
J. Li, Y. Liu, Z. Zhen, P. Jin, J. Feng, Weld Formation Mechanism and Microstructural Evolution of TC4/304 Stainless Steel Joint with Cu-Based Filler Wire and Preheating, Materials 12 (2019) 3071.
DOI: 10.3390/ma12193071
Google Scholar
[22]
L. Zhu, P. Xue, Q. Lan, G. Meng, Y. Ren, Z. Yang, P. Xu, Z. Liu, Recent Research and Development Status of Laser Cladding: A review, Opt. Laser Technol. 138 (2021) 106915.
DOI: 10.1016/j.optlastec.2021.106915
Google Scholar
[23]
F. Weng, C. Chen, H. Yu, Research Status of Laser Cladding on Titanium and Its Alloys: A review, Mater. Design 58 (2014) 412-425.
DOI: 10.1016/j.matdes.2014.01.077
Google Scholar
[24]
J. Sampedro, I. Pérez, B. Carcel, J.A. Ramos, V. Amigó, Laser Cladding of TiC for Better Titanium Components, Phys. Procedia 12 (2011) 313-322.
DOI: 10.1016/j.phpro.2011.03.040
Google Scholar
[25]
J.J. Candel, V. Amigó, J.A. Ramos, D. Busquets, Sliding Wear Resistance of TiC Reinforced Titanium Composite Coating Produced by Laser Cladding, Surf. Coat. Tech. 204 (2010) 3161-3166.
DOI: 10.1016/j.surfcoat.2010.02.070
Google Scholar
[26]
A. Emamian, S.F. Corbin, A. Khajepour, Effect of Laser Cladding Process Parameters on Clad Quality and In-situ Formed Microstructure of Fe–TiC Composite Coatings, Surf. Coat. Tech. 205 (2010) 2007-2015.
DOI: 10.1016/j.surfcoat.2010.08.087
Google Scholar
[27]
A. Emamian, S.F. Corbin, A. Khajepour, The Influence of Combined Laser Parameters on In-situ Formed TiC Morphology during Laser Cladding, Surf. Coat. Tech. 206 (2011) 124-131.
DOI: 10.1016/j.surfcoat.2011.06.062
Google Scholar
[28]
K. Li, D. Li, D. Liu, G. Pei, L. Sun, Microstructure Evolution and Mechanical Properties of Multiple-Layer Laser Cladding Coating of 308L Stainless Steel, Appl. Surf. Sci. 340 (2015) 143-150.
DOI: 10.1016/j.apsusc.2015.02.171
Google Scholar
[29]
H. Paydas, A. Mertens, R. Carrus, J.L. Beckers, J.T. Tchuindjang, Laser Cladding as Repair Technology for Ti6Al4V Alloy: Influence of Building Strategy on Microstructure and Hardness, Mater. Design 85 (2015) 497-510.
DOI: 10.1016/j.matdes.2015.07.035
Google Scholar
[30]
N. Poondla, T.S. Srivatsan, A. Patnaik, M. Petraroli, A Study of the Microstructure and Hardness of Two Titanium Alloys: Commercially Pure and Ti–6Al–4V, J. Alloy. Compd. 486 (2009) 162-167.
DOI: 10.1016/j.jallcom.2009.06.172
Google Scholar
[31]
M. Gao, C. Chen, L. Wang, Z. Wang, X. Zeng, Laser-Arc Hybrid Welding of Dissimilar Titanium Alloy and Stainless Steel Using Copper Wire, Metall. Mater. Trans. A 46 (2015) 2007-2020.
DOI: 10.1007/s11661-015-2798-3
Google Scholar
[32]
D.A. Fischer, I.T. Vargas, G.E. Pizarro, F. Armijo, M. Walczak, The Effect of Scan Rate on the Precision of Determining Corrosion Current by Tafel Extrapolation: A Numerical Study on the Example of Pure Cu in Chloride Containing Medium, Electrochim. Acta. 313 (2019) 457-467.
DOI: 10.1016/j.electacta.2019.04.064
Google Scholar
[33]
L. Jiang, X. Cui, G. Jin, H. Tian, Z. Tian, X. Zhang, S. Wan, Synthesis and Microstructure, Properties Characterization of Ni-Ti-Cu/Cu-Al Functionally Graded Coating on Mg-Li alloy by Laser Cladding, Appl. Surf. Sci. 575 (2022) 151645.
DOI: 10.1016/j.apsusc.2021.151645
Google Scholar