[1]
J. Rekola, A.J. Aho, J. Gunn, J. Matinlinna, J. Hirvonen, P. Viitaniemi, P.K. Vallittu, The effect of heat treatment of wood on osteoconductivity, Acta Biomater, 5 (2009) 1596-1604.
DOI: 10.1016/j.actbio.2009.01.018
Google Scholar
[2]
J. Rekola, L.V.J. Lassila, J. Hirvonen, M. Lahdenpera, R. Grenman, A.J. Aho, P.K. Vallittu, Effects of heat treatment of wood on hydroxylapatite type mineral precipitation and biomechanical properties in vitro, Mater. Sci. Mater. Med., 8 (2014) 2345-2354.
DOI: 10.1007/s10856-010-4087-4
Google Scholar
[3]
A.J. Aho, J. Rekola, J. Matinlinna, J. Gunn, T. Tirri, P. Viitaniemi, P., Vallittu, Natural composite of wood as replacement material for ostechondral bone defects, J. Biomed. Mater. Res. B Appl. Biomater, 83 (2007) 64-71.
DOI: 10.1002/jbm.b.30767
Google Scholar
[4]
K.A. Gross, E. Ezerietis, Juniper wood as a possible implant material, J. Biomed. Mater. Res. A, 64 (2003) 672-683,.
DOI: 10.1002/jbm.a.10437
Google Scholar
[5]
E. Ezerietis, J. Vetra, J. Gardovskis, K.A. Gross, R. Jupatovs, M. Skudra, J. Krumalis, A. Blauss, LV Patent 11851 (1998).
Google Scholar
[6]
Song et.al., Processing bulk natural wood into a high-performance structural material, Nature, 554 (2018) 224-228,.
Google Scholar
[7]
J.P. Cabral, B. Kafe, M. Subhani, J. Reiner and M. Ashraf, Densifcation of timber: a review on the process, material properties, and application, J. Wood Sci., 68 (2022) 1-24,.
DOI: 10.1186/s10086-022-02028-3
Google Scholar
[8]
A. Kutnar, M. Sernek, Densification of wood, Zbornik gozdarstva in lesarstva, 82 (2007) 53–62.
Google Scholar
[9]
J. Shi, J. Peng, Q. Huang, L. Cai1, and S.Q. Shi, Fabrication of densifed wood via synergy of chemical pretreatment, hot-pressing and post mechanical fxatio, J. Wood Sci., 66 (2020) 1-9.
DOI: 10.1186/s10086-020-1853-x
Google Scholar
[10]
P. Mania, M. Wróblewski, A. Wójciak, E. Roszyk and W. Molinski, Hardness of densified wood in relation to changed chemical composition, Forest, 11 (2020) 506-517.
DOI: 10.3390/f11050506
Google Scholar
[11]
V. Raman and K.C. Liew, Density of densified paraserianthes falcataria wood pre-treated with alkail, IOP Conf. Ser.: Earth Environ. Sci., 540 (2020) 012030.
DOI: 10.1088/1755-1315/549/1/012030
Google Scholar
[12]
Grant, J. Laboratory handbook of pulp and paper manufacture. Edvard Arnold&Co, Londona; 1944, p.320.
Google Scholar
[13]
I. Sable U. Grinfelds, L. Vikele, L. Rozenberga,M. Zeps, U. Neimane,A. Jansons, Effect of refining on the properties of fibres from young Scots (Pinus Sylvestris) and Lodgepole pines (Pinus Contorta), Baltic Forestry, 23 (2017), 529–533.
DOI: 10.15376/biores.7.2.1771-1783
Google Scholar
[14]
I. Sable U. Grinfelds, L. Vikele, L. Rozenberga, M. Zeps, D. Lazdina, A. Jansons, Chemical composition and fiber properties of fast-growing species in Latvia and its potential for forest bioindustry, Forestry Studies, 66 (2017) 27-32.
DOI: 10.1515/fsmu-2017-0004
Google Scholar
[15]
K.G. Bogolitsyn, M.A. Gusakova, S.S. Khviyuzov, I.N. Zubov, Physicochemical properties of conifer lignins using Juniperus communis as an e xample, Chem. Nat. Compd., 50 (2014) 337-341.
DOI: 10.1007/s10600-014-0946-4
Google Scholar
[16]
T. Hänninen, P. Tukiainen, K. Svedström, R. Serimaa, P. Saranpää, E. Kontturi, M. Hughes, T. Vuorinen, Ultrastructural evaluation of compression wood-like properties of common juniper (Juniperus communis L.) , Holzforschung, 66 (2012) 389-395.
DOI: 10.1515/hf.2011.166
Google Scholar
[17]
J. Wadenback, D. Clapham, G. Gellerstedt, S. von Arnold, Variation in content and composition of lignin in young wood of Norway spruce, Holzforschung 58 (2004) 107-115.
DOI: 10.1515/hf.2004.015
Google Scholar
[18]
R. Tupciauskas, J. Rizhikovs, P. Brazdausks, V. Fridrihsone, M. Andzs, Influence of steam explosion pre-treatment conditions on binder-less boards from hemp shives and wheat straw, Ind. Crop. and Prod. 170 (2021) 113717.
DOI: 10.1016/j.indcrop.2021.113717
Google Scholar
[19]
H. Pelit, F. Emiroglu, Density, hardness and strength properties of densified fir and aspen woods pretreated with water repellents, Holzforschung, 75 (2021) 358-367.
DOI: 10.1515/hf-2020-0075
Google Scholar
[20]
H.E. Meema, S. Meema, Compact bone mineral density of the normal human radius, Acta Radiol. Oncol. Radiat. Phys. Biol., 17 (1978) 342-352.
DOI: 10.3109/02841867809127938
Google Scholar
[21]
L.A. González‐Bárcenas, H. Trejo‐Camacho, I. Suárez‐Estrella, A. Heredia, C. Magaña, L. Bucio, and E. Orozco, Three point bending test of human femoral tissue: An essay in ancient and modern bones. AIP Conference Proceedings 173 (2003) 682, 173,.
DOI: 10.1063/1.1615117
Google Scholar
[22]
D. Singh, A. Rana, S.K. Jhajhria, B. Garg, P.M. Pandey and D. Kalyanasundaram, Experimental assessment of biomechanical properties in human male elbow bone subjected to bending and compression loads, J. Appl. Biomater. Funct. Mater. (2019) 1-13,.
DOI: 10.1177/2280800018793816
Google Scholar