Preliminary Study of Chemically Pretreated Densification of Juniper Wood for Use in Bone Implants

Article Preview

Abstract:

Kraft cooking of juniper wood with NaOH/Na2S aqueous solution has been used in the study for partial delignification at the temperature of 165°C for different residence time (0-40 min) following by thermal compression for densification under a pressure of 5 MPa at 100°C for 24 hours. The densified and natural juniper wood samples were characterized by chemical composition and mechanical properties. The results show that the density of densified juniper wood was increased by 96-127% reaching the value of 1170 kg/m3 that is similar to conventional bone implants (1090 kg/m3). Modulus of rupture and modulus of elasticity of densified juniper wood were increased by 85% and 621%, respectively, demonstrating a high potential of the material to be used as bone implants.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] J. Rekola, A.J. Aho, J. Gunn, J. Matinlinna, J. Hirvonen, P. Viitaniemi, P.K. Vallittu, The effect of heat treatment of wood on osteoconductivity, Acta Biomater, 5 (2009) 1596-1604.

DOI: 10.1016/j.actbio.2009.01.018

Google Scholar

[2] J. Rekola, L.V.J. Lassila, J. Hirvonen, M. Lahdenpera, R. Grenman, A.J. Aho, P.K. Vallittu, Effects of heat treatment of wood on hydroxylapatite type mineral precipitation and biomechanical properties in vitro, Mater. Sci. Mater. Med., 8 (2014) 2345-2354.

DOI: 10.1007/s10856-010-4087-4

Google Scholar

[3] A.J. Aho, J. Rekola, J. Matinlinna, J. Gunn, T. Tirri, P. Viitaniemi, P., Vallittu, Natural composite of wood as replacement material for ostechondral bone defects, J. Biomed. Mater. Res. B Appl. Biomater, 83 (2007) 64-71.

DOI: 10.1002/jbm.b.30767

Google Scholar

[4] K.A. Gross, E. Ezerietis, Juniper wood as a possible implant material, J. Biomed. Mater. Res. A, 64 (2003) 672-683,.

DOI: 10.1002/jbm.a.10437

Google Scholar

[5] E. Ezerietis, J. Vetra, J. Gardovskis, K.A. Gross, R. Jupatovs, M. Skudra, J. Krumalis, A. Blauss, LV Patent 11851 (1998).

Google Scholar

[6] Song et.al., Processing bulk natural wood into a high-performance structural material, Nature, 554 (2018) 224-228,.

Google Scholar

[7] J.P. Cabral, B. Kafe, M. Subhani, J. Reiner and M. Ashraf, Densifcation of timber: a review on the process, material properties, and application, J. Wood Sci., 68 (2022) 1-24,.

DOI: 10.1186/s10086-022-02028-3

Google Scholar

[8] A. Kutnar, M. Sernek, Densification of wood, Zbornik gozdarstva in lesarstva, 82 (2007) 53–62.

Google Scholar

[9] J. Shi, J. Peng, Q. Huang, L. Cai1, and S.Q. Shi, Fabrication of densifed wood via synergy of chemical pretreatment, hot-pressing and post mechanical fxatio, J. Wood Sci., 66 (2020) 1-9.

DOI: 10.1186/s10086-020-1853-x

Google Scholar

[10] P. Mania, M. Wróblewski, A. Wójciak, E. Roszyk and W. Molinski, Hardness of densified wood in relation to changed chemical composition, Forest, 11 (2020) 506-517.

DOI: 10.3390/f11050506

Google Scholar

[11] V. Raman and K.C. Liew, Density of densified paraserianthes falcataria wood pre-treated with alkail, IOP Conf. Ser.: Earth Environ. Sci., 540 (2020) 012030.

DOI: 10.1088/1755-1315/549/1/012030

Google Scholar

[12] Grant, J. Laboratory handbook of pulp and paper manufacture. Edvard Arnold&Co, Londona; 1944, p.320.

Google Scholar

[13] I. Sable U. Grinfelds, L. Vikele, L. Rozenberga,M. Zeps, U. Neimane,A. Jansons, Effect of refining on the properties of fibres from young Scots (Pinus Sylvestris) and Lodgepole pines (Pinus Contorta), Baltic Forestry, 23 (2017), 529–533.

DOI: 10.15376/biores.7.2.1771-1783

Google Scholar

[14] I. Sable U. Grinfelds, L. Vikele, L. Rozenberga, M. Zeps, D. Lazdina, A. Jansons, Chemical composition and fiber properties of fast-growing species in Latvia and its potential for forest bioindustry, Forestry Studies, 66 (2017) 27-32.

DOI: 10.1515/fsmu-2017-0004

Google Scholar

[15] K.G. Bogolitsyn, M.A. Gusakova, S.S. Khviyuzov, I.N. Zubov, Physicochemical properties of conifer lignins using Juniperus communis as an e xample, Chem. Nat. Compd., 50 (2014) 337-341.

DOI: 10.1007/s10600-014-0946-4

Google Scholar

[16] T. Hänninen, P. Tukiainen, K. Svedström, R. Serimaa, P. Saranpää, E. Kontturi, M. Hughes, T. Vuorinen, Ultrastructural evaluation of compression wood-like properties of common juniper (Juniperus communis L.) , Holzforschung, 66 (2012) 389-395.

DOI: 10.1515/hf.2011.166

Google Scholar

[17] J. Wadenback, D. Clapham, G. Gellerstedt, S. von Arnold, Variation in content and composition of lignin in young wood of Norway spruce, Holzforschung 58 (2004) 107-115.

DOI: 10.1515/hf.2004.015

Google Scholar

[18] R. Tupciauskas, J. Rizhikovs, P. Brazdausks, V. Fridrihsone, M. Andzs, Influence of steam explosion pre-treatment conditions on binder-less boards from hemp shives and wheat straw, Ind. Crop. and Prod. 170 (2021) 113717.

DOI: 10.1016/j.indcrop.2021.113717

Google Scholar

[19] H. Pelit, F. Emiroglu, Density, hardness and strength properties of densified fir and aspen woods pretreated with water repellents, Holzforschung, 75 (2021) 358-367.

DOI: 10.1515/hf-2020-0075

Google Scholar

[20] H.E. Meema, S. Meema, Compact bone mineral density of the normal human radius, Acta Radiol. Oncol. Radiat. Phys. Biol., 17 (1978) 342-352.

DOI: 10.3109/02841867809127938

Google Scholar

[21] L.A. González‐Bárcenas, H. Trejo‐Camacho, I. Suárez‐Estrella, A. Heredia, C. Magaña, L. Bucio, and E. Orozco, Three point bending test of human femoral tissue: An essay in ancient and modern bones. AIP Conference Proceedings 173 (2003) 682, 173,.

DOI: 10.1063/1.1615117

Google Scholar

[22] D. Singh, A. Rana, S.K. Jhajhria, B. Garg, P.M. Pandey and D. Kalyanasundaram, Experimental assessment of biomechanical properties in human male elbow bone subjected to bending and compression loads, J. Appl. Biomater. Funct. Mater. (2019) 1-13,.

DOI: 10.1177/2280800018793816

Google Scholar