Structural and Electric Properties of Ba-Fe-Ta-Na-Bi-Ti-O Ceramic System

Article Preview

Abstract:

The X-ray diffraction, microstructure, impedance, electric modulus, and ac-conductivity of Ba(Fe1/2Ta1/2)O3–(Na1/2Bi1/2)TiO3 solid-solutions were studied utilising a traditional high-temperature mixed-oxide technique. The phase-formations of the solid-solutions were determined utilising X-ray data, while SEM micrographs revealed a non-uniform dispersion of grains in the sample of unequal size (~1 – 20 mm). In all of the developed solid-solutions, the frequency (1Hz - 1MHz) dependence of imaginary and real parts of electric impedance in the temperature region of 50 and 500°C showed the NTCR character and hopping type of electrical conduction. The modulus spectrum variation was intrigued by the hopping mechanism for charge transport (temperature-dependent) in the samples with non-Debye type of behaviour. Besides, the low electrical conductivity of these solid-state solutions makes them ideal for industrial applications, particularly as capacitors.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1074)

Pages:

53-59

Citation:

Online since:

November 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Directive 2002/95/EC of European parliament and of the cancel of 27 January 2003 on restriction of the certain harmful substances in electrical and electronic equipment, official Journal of the European Union.

Google Scholar

[2] T. Takemake, H. Nagata, Current status and prospects, of lead free piezoelectric ceramics, J. Euro. Ceram. Soc. 25 (2005) 2693-2700.

Google Scholar

[3] K. Prasad, K. Kumari, Lily, K.P. Chandra, K.L. Yadav, S. Sen, Electrical conduction in (Na0.5Bi0.5)TiO3 ceramic: Impedance spectroscopy analysis, Adv. Appl. Ceram. 106 (2007) 241-246.

DOI: 10.1179/174367607x202627

Google Scholar

[4] W.-H. Jung, J.-H, Lee, J.-H. Sohn, H.-D Nam, S.-H. Cho, Dielectric loss anomaly in Ba(Fe1/2Ta1/2)O3 ceramics, Mater. Lett. 56 (2002) 334-338.

DOI: 10.1016/s0167-577x(02)00478-0

Google Scholar

[5] I. Raevski, S. Prosandeev, A. Bogatin, M. Malitskaya, L. Jastrabik, High dielectric permittivity in AFe1/2B1/2O3 nonferroelectric perovskite ceramics (A=Ba, Sr, Ca; B=Nb, Ta, Sb), J. Appl. Phys. 93 (2003) 4131-4136.

DOI: 10.1063/1.1558205

Google Scholar

[6] Z. Wang, X.M. Chen, L. Ni, Y.Y. Liu, X.Q. Liu, Dielectric relaxations in Ba(Fe1/2Ta1/2)O3 giant dielectric constant ceramics, Appl. Phys. Lett. 90 (2007) 102905-102907.

DOI: 10.1063/1.2711767

Google Scholar

[7] U.K. Mahto, S.K. Roy, S. Chaudhuri, K. Prasad, Effect of milling on the electrical properties of Ba(Fe1/2Ta1/2)O3 ceramic, Adv. Mater. Res. 5 (2016) 181-192.

Google Scholar

[8] G. Li, S. Liu, F. Liao, S. Tian, X. Jing, J. Lin, Y. Uesu, K. Kohn, K. Saitoh, M. Terauchi, N. Di, Z. Cheng, The structural and electric properties of the perovskite system BaTiO3–Ba(Fe1/2Ta1/2)O3, J. Solid State Chem. 177 (2004) 1695-1703.

DOI: 10.1016/j.jssc.2003.12.025

Google Scholar

[9] T. Phatungthane, G. Rujijanagul, K. Pengpat, S. Eitssayeam, T. Tunkasiri, L.F. Catica, R. Guo, A.S. Bhalla, Dielectric and impedance measurements on (1−x)Ba(Fe1/2Ta1/2)O3-xBa(Zn1/3Ta2/3)O3 ceramics, Curr. Appl. Phys. 14 (2014) 1819-1824.

DOI: 10.1016/j.cap.2014.09.026

Google Scholar

[10] S.K. Roy, S.N. Singh, S.K. Mukherjee, K. Prasad, Ba0.06(Na1/2Bi1/2)0.94TiO3-Ba(Fe1/2Ta1/2)O3: Giant permittivity lead-free ceramics, J. Mater, Sci.: Mater. Electron. 28 (2017) 4763-4771.

DOI: 10.1007/s10854-016-6121-x

Google Scholar

[11] L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louër, P. Scardi, Rietveld refinement guidelines, J. Appl. Cryst. 32 (1999) 36-50.

DOI: 10.1107/s0021889898009856

Google Scholar