Investigation on Flexural Property of Sandwich 3D Printed PLA Components - A Review

Article Preview

Abstract:

Making a product from design to finished product is difficult and time consuming job in conventional manufacturing process but in additive manufacturing (AM) it is an easy process. In AM technologies Fused Deposition Modeling (FDM) is an important printing technology to produce components using thermos plastics. Up to date AM technologies are used to make parts in single material, by using this additive manufacturing sandwich parts can be fabricated to improve flexural property of the material. A lightweight core and two thin solid face sheets with strong flexural rigidity at the top and bottom make up sandwich constructions. Sandwich structures have a core that can be developed and updated to meet our needs, which offers up new possibilities in a variety of disciplines. This method can be done with a variety of filaments, PLA having properties such as biodegradability, lack of disagreeable odor when heated, and usual environmental compatibility throughout its life cycle. PLA also produces 10 times less potentially harmful ultra-fine particles than Acrylonitrile Butadiene Styrene. This article concentrated review on PLA and PLA composite materials to improve flexural property

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1075)

Pages:

103-114

Citation:

Online since:

November 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kuznetsov, V. E., Solonin, A. N., Urzhumtsev, O. D., Schilling, R., & Tavitov, A. G. (2018). Strength of PLA components fabricated with fused deposition technology using a desktop 3D printer as a function of geometrical parameters of the process. Polymers, 10(3), 313.

DOI: 10.3390/polym10030313

Google Scholar

[2] Raj, S. A., Muthukumaran, E., & Jayakrishna, K. (2018). A case study of 3D printed PLA and its mechanical properties. Materials Today: Proceedings, 5(5), 11219-11226.

DOI: 10.1016/j.matpr.2018.01.146

Google Scholar

[3] Lanzotti, A., Martorelli, M., Maietta, S., Gerbino, S., Penta, F., & Gloria, A. (2019). A comparison between mechanical properties of specimens 3D printed with virgin and recycled PLA. Procedia Cirp, 79, 143-146.

DOI: 10.1016/j.procir.2019.02.030

Google Scholar

[4] Porter, J.H., Cain, T.M., Fox, S.L. and Harvey, P.S., 2019. Influence of infill properties on flexural rigidity of 3D-printed structural members. Virtual and physical prototyping, 14(2), pp.148-159.

DOI: 10.1080/17452759.2018.1537064

Google Scholar

[5] Sarvestani, H. Y., Akbarzadeh, A. H., Mirbolghasemi, A., & Hermenean, K. (2018). 3D printed meta-sandwich structures: Failure mechanism, energy absorption and multi-hit capability. Materials & Design, 160, 179-193.

DOI: 10.1016/j.matdes.2018.08.061

Google Scholar

[6] Araújo, H., Leite, M., Ribeiro, A. R., Deus, A. M., Reis, L., & Vaz, M. F. (2019). The effect of geometry on the flexural properties of cellular core structures. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(3), 338-347.

DOI: 10.1177/1464420718805511

Google Scholar

[7] Brischetto, S., & Torre, R. (2020). Honeycomb Sandwich Specimens Made of PLA and Produced Via 3D FDM Printing Process: An Experimental Study. Journal of Aircraft and Spacecraft Technology, 4, 54-69.

DOI: 10.3844/jastsp.2020.54.69

Google Scholar

[8] Zhu, Z. H., Zhang, N., Zhang, Y., Hao, M. Y., & Wu, H. W. (2020). Study of the addition of the hybrid sisal fibers on the dynamic mechanical property of SFs reinforced polylactic acid (PLA) composites. In IOP Conference Series: Materials Science and Engineering (Vol. 744, No. 1, p.012012). IOP Publishing.

DOI: 10.1088/1757-899x/744/1/012012

Google Scholar

[9] Brischetto, S., Ferro, C. G., Torre, R., & Maggiore, P. (2018). 3D FDM production and mechanical behavior of polymeric sandwich specimens embedding classical and honeycomb cores. Curved and Layered Structures, 5(1), 80-94.

DOI: 10.1515/cls-2018-0007

Google Scholar

[10] Takayama, T., Daigaku, Y., Ito, H., & Takamori, H. (2014). Mechanical properties of bio-absorbable PLA/PGA fiber-reinforced composites. Journal of Mechanical Science and Technology, 28(10), 4151-4154.

DOI: 10.1007/s12206-014-0927-3

Google Scholar

[11] Mamun, A. A., & Bledzki, A. K. (2013). Micro fibre reinforced PLA and PP composites: Enzyme modification, mechanical and thermal properties. Composites Science and Technology, 78, 10-17.

DOI: 10.1016/j.compscitech.2013.01.013

Google Scholar

[12] Setiadi, A., Raharjo, W.W., & Triyono, T. (2017, January). The effect of core thickness variation of sandwich composite cantala rHDPE on mechanical strength of bending test. In AIP Conference Proceedings (Vol. 1788, No. 1, p.030058). AIP Publishing LLC.

DOI: 10.1063/1.4968311

Google Scholar

[13] Ilyas, R. A., Sapuan, S. M., Harussani, M. M., Hakimi, M. Y. A. Y., Haziq, M. Z. M., Atikah, M. S. N., ... & Asrofi, M. (2021). Polylactic Acid (PLA) Biocomposite: Processing, Additive Manufacturing and Advanced Applications. Polymers, 13(8), 1326.

DOI: 10.3390/polym13081326

Google Scholar

[14] ASTM, I. (2007). Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM D790-07.

DOI: 10.1520/d0790-15e01

Google Scholar

[15] Rajpurohit, S.R., & Dave, H. K. (2018). Flexural strength of fused filament fabricated (FFF) PLA parts on an open-source 3D printer. Advances in Manufacturing, 6(4), 430-441.

DOI: 10.1007/s40436-018-0237-6

Google Scholar

[16] Kabir, S.F., Mathur, K. and Seyam, A.F.M., 2021. Impact resistance and failure mechanism of 3D printed continuous fiber-reinforced cellular composites. The Journal of The Textile Institute, 112(5), pp.752-766.

DOI: 10.1080/00405000.2020.1778223

Google Scholar

[17] Sugiyama, K., Matsuzaki, R., Ueda, M., Todoroki, A., & Hirano, Y. (2018). 3D printing of composite sandwich structures using continuous carbon fiber and fiber tension. Composites Part A: Applied Science and Manufacturing, 113, 114-121.

DOI: 10.1016/j.compositesa.2018.07.029

Google Scholar

[18] Naveed, N., 2021. Investigate the effects of process parameters on material properties and microstructural changes of 3D-printed specimens using fused deposition modelling (FDM). Materials Technology, 36(5), pp.317-330.

DOI: 10.1080/10667857.2020.1758475

Google Scholar

[19] Kumar, S., Singh, R., Singh, T. P., & Batish, A. (2020). On flexural and pull out properties of 3D printed PLA based hybrid composite matrix. Materials Research Express, 7(1), 015330.

DOI: 10.1088/2053-1591/ab66f4

Google Scholar

[20] Sanivada, U. K., Mármol, G., Brito, F. P., & Fangueiro, R. (2020). PLA composites reinforced with flax and jute fibers—A review of recent trends, processing parameters and mechanical properties. Polymers, 12(10), 2373.

DOI: 10.3390/polym12102373

Google Scholar

[21] Pérez‐Fonseca, A. A., Robledo‐Ortíz, J. R., González‐Núñez, R., & Rodrigue, D. (2016). Effect of thermal annealing on the mechanical and thermal properties of polylactic acid–cellulosic fiber biocomposites. Journal of Applied Polymer Science, 133(31).

DOI: 10.1002/app.43750

Google Scholar

[22] Harper, L. T., Ahmed, I., Felfel, R. M., & Qian, C. (2012). Finite element modelling of the flexural performance of resorbable phosphate glass fibre reinforced PLA composite bone plates. journal of the mechanical behavior of biomedical materials, 15, 13-23.

DOI: 10.1016/j.jmbbm.2012.07.002

Google Scholar

[23] Islam, M. S., Hasbullah, N. A. B., Hasan, M., Talib, Z. A., Jawaid, M., & Haafiz, M. M. (2015). Physical, mechanical and biodegradable properties of kenaf/coir hybrid fiber reinforced polymer nanocomposites. Materials Today Communications, 4, 69-76.

DOI: 10.1016/j.mtcomm.2015.05.001

Google Scholar

[24] Eng, C. C., Ibrahim, N. A., Zainuddin, N., Ariffin, H., Yunus, W. M., Wan, Z., & Then, Y. Y. (2014). Enhancement of mechanical and dynamic mechanical properties of hydrophilic nanoclay reinforced polylactic acid/polycaprolactone/oil palm mesocarp fiber hybrid composites. International Journal of Polymer Science, (2014).

DOI: 10.1155/2014/715801

Google Scholar

[25] Awal, A., Rana, M., & Sain, M. (2015). Thermorheological and mechanical properties of cellulose reinforced PLA bio-composites. Mechanics of Materials, 80, 87-95.

DOI: 10.1016/j.mechmat.2014.09.009

Google Scholar

[26] Camargo, J. C., Machado, Á. R., Almeida, E. C., & Sousa, S. E. F. M. (2019). Mechanical properties of PLA-graphene filament for FDM 3D printing. The International Journal of Advanced Manufacturing Technology, 103(5-8), 2423-2443.

DOI: 10.1007/s00170-019-03532-5

Google Scholar

[27] Sbardella, F., Martinelli, A., Di Lisio, V., Bavasso, I., Russo, P., Tirillò, J., & Sarasini, F. (2021). Surface Modification of Basalt Fibres with ZnO Nanorods and Its Effect on Thermal and Mechanical Properties of PLA-Based Composites. Biomolecules, 11(2), 200.

DOI: 10.3390/biom11020200

Google Scholar

[28] Chow, W. S., & Lok, S. K. (2008). Effect of EPM-g-MAH on the flexural and morphological properties of poly (lactic acid)/organo-montmorillonite nanocomposites. Journal of Thermoplastic Composite Materials, 21(3), 265-277.

DOI: 10.1177/0892705708089477

Google Scholar

[29] Takayama, T., Uchiumi, K., Ito, H., Kawai, T., & Todo, M. (2013). Particle size distribution effects on physical properties of injection molded HA/PLA composites. Advanced Composite Materials, 22(5), 327-337.

DOI: 10.1080/09243046.2013.820123

Google Scholar

[30] Ali, W., Mehboob, A., Han, M. G., & Chang, S. H. (2019). Effect of fluoride coating on degradation behaviour of unidirectional Mg/PLA biodegradable composite for load-bearing bone implant application. Composites Part A: Applied Science and Manufacturing, 124, 105464.

DOI: 10.1016/j.compositesa.2019.05.032

Google Scholar

[31] Gunasekaran, K. N., Aravinth, V., Kumaran, C. M., Madhankumar, K., & Kumar, S. P. (2021). Investigation of mechanical properties of PLA printed materials under varying infill density. Materials Today: Proceedings, 45, 1849-1856.

DOI: 10.1016/j.matpr.2020.09.041

Google Scholar

[32] Jo, M. Y., Ryu, Y. J., Ko, J. H., & Yoon, J. S. (2012). Effects of compatibilizers on the mechanical properties of ABS/PLA composites. Journal of Applied Polymer Science, 125(S2), E231-E238.

DOI: 10.1002/app.36732

Google Scholar

[33] Tarrés, Q., Oliver-Ortega, H., Espinach, F. X., Mutjé, P., Delgado-Aguilar, M., & Méndez, J. A. (2019). Determination of mean intrinsic flexural strength and coupling factor of natural fiber reinforcement in polylactic acid biocomposites. Polymers, 11(11), 1736.

DOI: 10.3390/polym11111736

Google Scholar

[34] Awal, A., Rana, M., & Sain, M. (2015). Thermorheological and mechanical properties of cellulose reinforced PLA bio-composites. Mechanics of Materials, 80, 87-95.

DOI: 10.1016/j.mechmat.2014.09.009

Google Scholar

[35] Chaitanya, S., & Singh, I. (2018). Ecofriendly treatment of aloe vera fibers for PLA based green composites. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(1), 143-150.

DOI: 10.1007/s40684-018-0015-8

Google Scholar

[36] Balakrishnan, H., Hassan, A., & Wahit, M. U. (2010). Mechanical, thermal, and morphological properties of polylactic acid/linear low density polyethylene blends. Journal of Elastomers & Plastics, 42(3), 223-239.

DOI: 10.1177/0095244310362403

Google Scholar

[37] Asumani, O. M. L., Reid, R. G., & Paskaramoorthy, R. (2012). The effects of alkali–silane treatment on the tensile and flexural properties of short fibre non-woven kenaf reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 43(9), 1431-1440.

DOI: 10.1016/j.compositesa.2012.04.007

Google Scholar

[38] Dong, Y., Ghataura, A., Takagi, H., Haroosh, H. J., Nakagaito, A. N., & Lau, K. T. (2014). Polylactic acid (PLA) biocomposites reinforced with coir fibres: Evaluation of mechanical performance and multifunctional properties. Composites Part A: Applied Science and Manufacturing, 63, 76-84.

DOI: 10.1016/j.compositesa.2014.04.003

Google Scholar

[39] Valvez, S., Santos, P., Parente, J. M., Silva, M. P., & Reis, P. N. B. (2020). 3D printed continuous carbon fiber reinforced PLA composites: A short review. Procedia Structural Integrity, 25, 394-399.

DOI: 10.1016/j.prostr.2020.04.056

Google Scholar

[40] Maqsood, N., & Rimašauskas, M. (2021). Characterization of carbon fiber reinforced PLA composites manufactured by fused deposition modeling. Composites Part C: Open Access, 4, 100112.

DOI: 10.1016/j.jcomc.2021.100112

Google Scholar