Mechanical Property Analysis of Surface Modified Natural Fiber/Filler Hybrid Composite

Article Preview

Abstract:

The filler materials are supported alongside natural fiber in the composite to work on the quality and property of the part materials given the prerequisites and their applications. In this paper, the mixture composite was created with Hemp/Carbon fiber. Different wt% (15%,20%,25%) of Hemp fiber and filler materials were utilized as support. The Hemp fiber was surface treated with 5% of KMnO4. The created hybrid fiber composites were performed with different mechanical properties concentrated on like tensile, bending, impact, and Brinell hardness this multitude of tests were proceeded according to ASTM guidelines. From the mechanical property study, 25 wt% Hemp fiber cross breed composite hold great mechanical properties contrasted with any remaining wt% created half breed composite. keywords:- hybrid composite, surface treatment, mechanical property, fillers.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1075)

Pages:

141-148

Citation:

Online since:

November 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Jani, S. P., Jose, A. S., Rajaganapathy, C., & Khan, M. A. (2022). A polymer resin matrix modified by coconut filler and its effect on structural behavior of glass fiber-reinforced polymer composites. Iranian Polymer Journal, 1-11.

DOI: 10.1007/s13726-022-01042-y

Google Scholar

[2] Asim, M., Paridah, M. T., Chandrasekar, M., Shahroze, R. M., Jawaid, M., Nasir, M., & Siakeng, R. (2020). Thermal stability of natural fibers and their polymer composites. Iran. Polym. J, 29, 625-648.

DOI: 10.1007/s13726-020-00824-6

Google Scholar

[3] Kushvaha, V., Kumar, S. A., Madhushri, P., & Sharma, A. (2020). Artificial neural network technique to predict dynamic fracture of particulate composite. J. Compos. Mater, 54(22): 3099-3108.

DOI: 10.1177/0021998320911418

Google Scholar

[4] Madhu, P., M. R. Sanjay, Anish Khan, Ahmed Al Otaibi, Salma Ahmed Al-Zahrani, S. Pradeep, B. Yogesha, Pawinee Boonyasopon, and Suchart Siengchin. (2020), Hybrid Effect of PJFs/E-glass/Carbon Fabric Reinforced Hybrid Epoxy Composites for Structural Applications. J. Nat. Fibers 1-11.

DOI: 10.1080/15440478.2020.1848724

Google Scholar

[5] S. P. Jani, A. Senthil Kumar, M. Adam Khan, S. Sajith, and A. Saravanan, (2020), J. Nat. Fibers,.

Google Scholar

[6] Bandyopadhyay-Ghosh, S., Ghosh, S.B., Sain, M.,The use of biobased nanofibres in composites. In: Faruk, O., Sain, M. (Eds.), Biofiber Reinforcements in Composite Materials. Elsevier, Sawston, Cambridge, (2015) p.571–647. http://dx.doi.org/10.1533/ 9781782421276.5.571.

DOI: 10.1533/9781782421276.5.571

Google Scholar

[7] Abraham, E., Deepa, B., Pothan, L.A., Jacob, M., Thomas, S., Cvelbar, U., Anandjiwala, R.., Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydr. Polym. (2011) 86, 1468–1475. http://dx.doi.org/10.1016/j.carbpol.2011.06. 034.

DOI: 10.1016/j.carbpol.2011.06.034

Google Scholar

[8] Tengku F. Z. H., Faisal A. H., Salmah and Iqmal Tahir, 'The Effect of Acetic Acid on Properties of Coconut Shell Filled Low Density Polypropylene Composites', International journal of Chemistry. (2010)10 (3), 334 -340.

DOI: 10.22146/ijc.21439

Google Scholar

[9] Jani S.P., Kumar A.S, Kahn M.A., and Kumar M.U., Machinability of fiber reinforced composite with and without filler as reinforcement,, Material and Manufacturing Process. (2016) Vol. 31, 1393-99.

Google Scholar

[10] P. R. Ross, J. Paramanandham, P. Thenmozhi, K. S. Abbiramy, M. Muthulingam, Int. J. Rec. Environ. Sci. Technol. 2(2), 45-47 (2012).

Google Scholar

[11] Jani, S. P., Sajin, J. B., Godwin, G., & Ananthapuri, S. A. (2019). Mechanical behaviour of coir and wood dust particulate reinforced hybrid polymer composites.

Google Scholar

[12] Sujin Jose, A., Athijayamani, A., Jani, S. P., Stalany, M. V., & Khan, A. M. (2022). Investigations on Mechanical Properties of Bio-Waste Micro Particles Reinforced Phenol Formaldehyde Composites. Archives of Metallurgy and Materials, 67.

DOI: 10.1016/j.matpr.2020.07.360

Google Scholar

[13] Barbière, R., Touchard, F., Chocinski-Arnault, L., & Mellier, D. (2020). Influence of moisture and drying on fatigue damage mechanisms in a woven hemp/epoxy composite: Acoustic emission and micro-CT analysis. International Journal of Fatigue, 136, 105593.

DOI: 10.1016/j.ijfatigue.2020.105593

Google Scholar

[14] Fernandes Medeiros de Queiroz, H., Banea, M. D., Kioshi Kawasaki Cavalcanti, D., & de Souza e Silva Neto, J. (2021). The effect of multiscale hybridization on the mechanical properties of natural fiber‐reinforced composites. Journal of Applied Polymer Science, 138(41), 51213.

DOI: 10.1002/app.51213

Google Scholar

[15] Seldon, P. A., & Rajesh, R. (2022). Mechanical and Thermal Characterization of Hemp/Rice-Husk/E-Glass Fiber Cardanol Epoxy Matrix Hybrid Composites. Journal of Natural Fibers, 1-10.

DOI: 10.1080/15440478.2022.2085840

Google Scholar