Study of the Mechanical Properties of the Copper Matrix Composites (CMCs): A Review

Article Preview

Abstract:

Copper matrix composites (CMCs) are known to be lightweight and possess competent mechanical properties, hence is highly suitable for a broad range of advanced applications. Its significance in aerospace, marine, and structural domains make it worthwhile to be investigatedfor low-cost manufacturing and selection of appropriate reinforcements. A comprehensive understanding of CMCs in terms of its fabrication methodologies and the diverse properties achievable through the incorporation of discrete reinforcement materials are essential to beexplored. Given, this manuscript evaluates the distinct methodologies for the preparation of CMCs through various fabrication routes. Besides, the substantial improvement/variation in properties such as mechanical (strength, toughness, hardness and creep), metallurgical (microstructure, grain size and grain boundaries), thermal properties (thermal conductivity, coefficient of thermal expansion) and tribological properties (friction, wear) through the incorporation of reinforcements (additives/filler materials/adhesives) of CMCs also is brought under detailed discussion.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1075)

Pages:

149-171

Citation:

Online since:

November 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Schubert, Ciupiński, W. Zieliński, A. Michalski, T. Weißgärber, B. Kieback, Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink applications, Scr. Mater. 58 (2008) 263–266. https://doi.org/10.1016/j.scriptamat.2007.10.011.

DOI: 10.1016/j.scriptamat.2007.10.011

Google Scholar

[2] L. Weber, R. Tavangar, On the influence of active element content on the thermal conductivity and thermal expansion of Cu-X (X = Cr, B) diamond composites, Scr. Mater. 57 (2007) 988–991. https://doi.org/10.1016/j.scriptamat.2007.08.007.

DOI: 10.1016/j.scriptamat.2007.08.007

Google Scholar

[3] Y. XIA, Y. qing SONG, C. guang LIN, S. CUI, Z. zheng FANG, Effect of carbide formers on microstructure and thermal conductivity of diamond-Cu composites for heat sink materials, Trans. Nonferrous Met. Soc. China (English Ed. 19 (2009) 1161–1166. https://doi.org/10.1016/S1003-6326(08)60422-7.

DOI: 10.1016/s1003-6326(08)60422-7

Google Scholar

[4] L. Weber, R. Tavangar, Diamond-Based Metal Matrix Composites for Thermal Management Made by Liquid Metal Infiltration — Potential and Limits, Adv. Mater. Res. 59 (2008) 111–115. https://doi.org/10.4028/www.scientific.net/amr.59.111.

DOI: 10.4028/www.scientific.net/amr.59.111

Google Scholar

[5] H.L. Davidson, N.J. Colella, J.A. Kerns, D. Makowiecki, Copper-diamond composite susbtrates for electronic components, Proc. - Electron. Components Technol. Conf. (1995) 538–541. https://doi.org/10.1109/ectc.1995.515335.

DOI: 10.1109/ectc.1995.515335

Google Scholar

[6] K. Chu, Z. Liu, C. Jia, H. Chen, X. Liang, W. Gao, W. Tian, H. Guo, Thermal conductivity of SPS consolidated Cu/diamond composites with Cr-coated diamond particles, J. Alloys Compd. 490 (2010) 453–458. https://doi.org/10.1016/j.jallcom.2009.10.040.

DOI: 10.1016/j.jallcom.2009.10.040

Google Scholar

[7] L.L. Dong, M. Ahangarkani, W.G. Chen, Y.S. Zhang, Recent progress in development of tungsten-copper composites: Fabrication, modification and applications, Int. J. Refract. Met. Hard Mater. 75 (2018) 30–42. https://doi.org/10.1016/j.ijrmhm.2018.03.014.

DOI: 10.1016/j.ijrmhm.2018.03.014

Google Scholar

[8] K. Wang, X.P. Wang, R. Liu, T. Hao, T. Zhang, C.S. Liu, Q.F. Fang, The study on the microwave sintering of tungsten at relatively low temperature, J. Nucl. Mater. 431 (2012) 206–211. https://doi.org/10.1016/j.jnucmat.2011.11.012.

DOI: 10.1016/j.jnucmat.2011.11.012

Google Scholar

[9] E.A. Ekimov, N. V. Suetin, A.F. Popovich, V.G. Ralchenko, Thermal conductivity of diamond composites sintered under high pressures, Diam. Relat. Mater. 17 (2008) 838–843. https://doi.org/10.1016/j.diamond.2007.12.051.

DOI: 10.1016/j.diamond.2007.12.051

Google Scholar

[10] L. Constantin, L. Fan, M. Pontoreau, F. Wang, B. Cui, J.L. Battaglia, J.F. Silvain, Y.F. Lu, Additive manufacturing of copper/diamond composites for thermal management applications, Manuf. Lett. 24 (2020) 61–66. https://doi.org/10.1016/j.mfglet.2020.03.014.

DOI: 10.1016/j.mfglet.2020.03.014

Google Scholar

[11] L. Wu, G. Zhang, B. Li, W. Wang, X. Huang, Z. Chen, G. Dong, Q. Zhang, J. Yao, Study on microstructure and tribological performance of diamond/cu composite coating via supersonic laser deposition, Coatings. 10 (2020) 18. https://doi.org/10.3390/coatings10030276.

DOI: 10.3390/coatings10030276

Google Scholar

[12] K. Yoshida, H. Morigami, Thermal properties of diamond/copper composite material, Microelectron. Reliab. 44 (2004) 303–308. https://doi.org/10.1016/S0026-2714(03)00215-4.

DOI: 10.1016/s0026-2714(03)00215-4

Google Scholar

[13] C. Zweben, 2001 International Symposium on Advanced Packaging Materials Advanced Composites And Other Advanced Materials, Int. Symp. Adv. Packag. Mater. Adv. 42 (2001) 37–40.

Google Scholar

[14] G.A. Slack, CRYSTALS, J.Phys,Chem. Solids. 34 (1973) 321–335.

Google Scholar

[15] X. yu Zhang, M. Xu, S. zhu Cao, W. bo Chen, W. yao Yang, Q. yu Yang, Enhanced thermal conductivity of diamond/copper composite fabricated through doping with rare-earth oxide Sc2O3, Diam. Relat. Mater. 104 (2020) 107755. https://doi.org/10.1016/j.diamond.2020.107755.

DOI: 10.1016/j.diamond.2020.107755

Google Scholar

[16] X. Zhang, H. Guo, F. Yin, Y. Fan, Y. Zhang, Interfacial microstructure and properties of diamond/Cu-xCr composites for electronic packaging applications, Rare Met. 30 (2011) 94–98. https://doi.org/10.1007/s12598-011-0204-x.

DOI: 10.1007/s12598-011-0204-x

Google Scholar

[17] J. Shuai, L. Xiong, L. Zhu, W. Li, Enhanced strength and excellent transport properties of a superaligned carbon nanotubes reinforced copper matrix laminar composite, Compos. Part A Appl. Sci. Manuf. 88 (2016) 148–155. https://doi.org/10.1016/j.compositesa.2016.05.027.

DOI: 10.1016/j.compositesa.2016.05.027

Google Scholar

[18] J. Wu, H. Zhang, Y. Zhang, J. Li, X. Wang, Effect of copper content on the thermal conductivity and thermal expansion of Al-Cu/diamond composites, Mater. Des. 39 (2012) 87–92. https://doi.org/10.1016/j.matdes.2012.02.029.

DOI: 10.1016/j.matdes.2012.02.029

Google Scholar

[19] M. Roosta, H. Baharvandi, H. Abdizade, An experimental investigation on the fabrication of W-Cu composite through hot-press, Int. J. Ind. Chem. 3 (2012) 1–6. https://doi.org/10.1186/2228-5547-3-10.

DOI: 10.1186/2228-5547-3-10

Google Scholar

[20] E. Hong, B. Kaplin, T. You, M. soo Suh, Y.S. Kim, H. Choe, Tribological properties of copper alloy-based composites reinforced with tungsten carbide particles, Wear. 270 (2011) 591–597. https://doi.org/10.1016/j.wear.2011.01.015.

DOI: 10.1016/j.wear.2011.01.015

Google Scholar

[21] S. Zhao, Z. Zheng, Z. Huang, S. Dong, P. Luo, Z. Zhang, Y. Wang, Cu matrix composites reinforced with aligned carbon nanotubes: Mechanical, electrical and thermal properties, Mater. Sci. Eng. A. 675 (2016) 82–91. https://doi.org/10.1016/j.msea.2016.08.044.

DOI: 10.1016/j.msea.2016.08.044

Google Scholar

[22] M. Shabani, M.H. Paydar, R. Zamiri, M. Goodarzi, M.M. Moshksar, Microstructural and sliding wear behavior of SiC-particle reinforced copper matrix composites fabricated by sintering and sinter-forging processes, J. Mater. Res. Technol. 5 (2016) 5–12. https://doi.org/10.1016/j.jmrt.2015.03.002.

DOI: 10.1016/j.jmrt.2015.03.002

Google Scholar

[23] A.M. Abyzov, S. V. Kidalov, F.M. Shakhov, High thermal conductivity composite of diamond particles with tungsten coating in a copper matrix for heat sink application, Appl. Therm. Eng. 48 (2012) 72–80. https://doi.org/10.1016/j.applthermaleng.2012.04.063.

DOI: 10.1016/j.applthermaleng.2012.04.063

Google Scholar

[24] R. Bollina, J. Landgraf, H. Wagner, R. Wilhelm, S. Knippscheer, B. Tabernig, Performance, production, and applications of advanced metal diamond composite heat spreader, Proc. - 2006 Int. Symp. Microelectron. IMAPS 2006. (2006) 742–747.

Google Scholar

[25] W.B. Johnson, B. Sonuparlak, Diamond/Al metal matrix composites formed by the pressureless metal infiltration process, J. Mater. Res. 8 (1993) 1169–1173. https://doi.org/10.1557/JMR. 1993.1169.

DOI: 10.1557/jmr.1993.1169

Google Scholar

[26] K. Loutfy, H. Hirotsuru, Advanced diamond based metal matrix composites for thermal management of RF devices, 2011 IEEE 12th Annu. Wirel. Microw. Technol. Conf. WAMICON 2011. (2011). https://doi.org/10.1109/WAMICON.2011.5872860.

DOI: 10.1109/wamicon.2011.5872860

Google Scholar

[27] J.H. Wu, H.L. Zhang, Y. Zhang, J.W. Li, X.T. Wang, The role of Ti coating in enhancing tensile strength of Al/diamond composites, Mater. Sci. Eng. A. 565 (2013) 33–37. https://doi.org/10.1016/j.msea.2012.11.124.

DOI: 10.1016/j.msea.2012.11.124

Google Scholar

[28] H. Zhang, J. Wu, Y. Zhang, J. Li, X. Wang, Y. Sun, Mechanical properties of diamond/Al composites with Ti-coated diamond particles produced by gas-assisted pressure infiltration, Mater. Sci. Eng. A. 626 (2015) 362–368. https://doi.org/10.1016/j.msea.2014.11.077.

DOI: 10.1016/j.msea.2014.11.077

Google Scholar

[29] L.. johnson D. P. H. Hasselman, Effective thermal conductivity of particulate composites with interfacial thermal resistance, J. Appl. Phys. 81 (1997) 6692–6699. https://doi.org/10.1063/1.365209.

DOI: 10.1063/1.365209

Google Scholar

[30] J. Wang, L.N. Guo, W.M. Lin, J. Chen, S. Zhang, S. Da Chen, T.T. Zhen, Y.Y. Zhang, The effects of graphene content on the corrosion resistance, and electrical, thermal and mechanical properties of graphene/copper composites, Xinxing Tan Cailiao/New Carbon Mater. 34 (2019) 161–169. https://doi.org/10.1016/S1872-5805(19)60009-0.

DOI: 10.1016/s1872-5805(19)60009-0

Google Scholar

[31] J.P. Tu, Y.Z. Yang, L.Y. Wang, X.C. Ma, X.B. Zhang, Tribological properties of carbon-nanotube-reinforced copper composites, Tribol. Lett. 10 (2001) 225–228. https://doi.org/10.1023/A:1016662114589.

Google Scholar

[32] T. Varol, A. Canakci, Microstructure, electrical conductivity and hardness of multilayer graphene/Copper nanocomposites synthesized by flake powder metallurgy, Met. Mater. Int. 21 (2015) 704–712. https://doi.org/10.1007/s12540-015-5058-6.

DOI: 10.1007/s12540-015-5058-6

Google Scholar

[33] S.M. Uddin, T. Mahmud, C. Wolf, C. Glanz, I. Kolaric, C. Volkmer, H. Höller, U. Wienecke, S. Roth, H.J. Fecht, Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites, Compos. Sci. Technol. 70 (2010) 2253–2257. https://doi.org/10.1016/j.compscitech.2010.07.012.

DOI: 10.1016/j.compscitech.2010.07.012

Google Scholar

[34] H. Rezagholi, M. Mirjani, M. Abdi, S. Borji, Properties of copper/nano-diamond composites upon pre/post heat treatment, Mater. Res. Express. 6 (2019). https://doi.org/10.1088/2053-1591/ab547e.

DOI: 10.1088/2053-1591/ab547e

Google Scholar

[35] Y. Yue, Y. Gao, W. Hu, B. Xu, J. Wang, X. Zhang, Q. Zhang, Y. Wang, B. Ge, Z. Yang, Z. Li, P. Ying, X. Liu, D. Yu, B. Wei, Z. Wang, X.F. Zhou, L. Guo, Y. Tian, Hierarchically structured diamond composite with exceptional toughness, Nature. 582 (2020) 370–374. https://doi.org/10.1038/s41586-020-2361-2.

DOI: 10.1038/s41586-020-2361-2

Google Scholar

[36] X. He, G. Zou, Y. Xu, H. Zhu, H. Jiang, X. Jiang, W. Xia, J. Chen, J. Wu, S. Yang, Nano-mechanical and tribological properties of copper matrix composites reinforced by graphene nanosheets, Prog. Nat. Sci. Mater. Int. 28 (2018) 416–421. https://doi.org/10.1016/j.pnsc. 2018.04.014.

DOI: 10.1016/j.pnsc.2018.04.014

Google Scholar

[37] S. Ren, X. Shen, C. Guo, N. Liu, J. Zang, X. He, X. Qu, Effect of coating on the microstructure and thermal conductivities of diamond-Cu composites prepared by powder metallurgy, Compos. Sci. Technol. 71 (2011) 1550–1555. https://doi.org/10.1016/j.compscitech.2011.06.012.

DOI: 10.1016/j.compscitech.2011.06.012

Google Scholar

[38] H.J. Cho, D. Yan, J. Tam, U. Erb, Effects of diamond particle size on the formation of copper matrix and the thermal transport properties in electrodeposited copper-diamond composite materials, J. Alloys Compd. 791 (2019) 1128–1137. https://doi.org/10.1016/j.jallcom.2019.03.347.

DOI: 10.1016/j.jallcom.2019.03.347

Google Scholar

[39] S.C. Tjong, K.C. Lau, Abrasive wear behavior of TiB2 particle-reinforced copper matrix composites, Mater. Sci. Eng. A. 282 (2000) 183–186. https://doi.org/10.1016/S0921-5093(99)00752-2.

DOI: 10.1016/s0921-5093(99)00752-2

Google Scholar

[40] C. Chen, Y. Xie, X. Yan, M. Ahmed, R. Lupoi, J. Wang, Z. Ren, H. Liao, S. Yin, Tribological properties of Al/diamond composites produced by cold spray additive manufacturing, Addit. Manuf. 36 (2020) 101434. https://doi.org/10.1016/j.addma.2020.101434.

DOI: 10.1016/j.addma.2020.101434

Google Scholar

[41] K.I. Triantou, D.I. Pantelis, V. Guipont, M. Jeandin, Microstructure and tribological behavior of copper and composite copper+alumina cold sprayed coatings for various alumina contents, Wear. 336–337 (2015) 96–107. https://doi.org/10.1016/j.wear.2015.05.003.

DOI: 10.1016/j.wear.2015.05.003

Google Scholar

[42] Z.A. Hamid, M.H. Gomaa, H.B. Hassan, Corrosion Performance of Copper-Diamond Composites in Different Aqueous Solutions, Am. J. Electromagn. Appl. 4 (2016) 39–49. https://doi.org/10.11648/j.ajea.20160402.15.

Google Scholar

[43] Z. Xie, H. Guo, X. Zhang, S. Huang, Corrosion behavior of pressure infiltration diamond/Cu composites in neutral salt spray, Materials (Basel). 13 (2020) 1–11. https://doi.org/10.3390/MA13081847.

DOI: 10.3390/ma13081847

Google Scholar

[44] A.M. Abyzov, F.M. Shakhov, A.I. Averkin, V.I. Nikolaev, Mechanical properties of a diamond-copper composite with high thermal conductivity, Mater. Des. 87 (2015) 527–539. https://doi.org/10.1016/j.matdes.2015.08.048.

DOI: 10.1016/j.matdes.2015.08.048

Google Scholar

[45] P.W. Ruch, O. Beffort, S. Kleiner, L. Weber, P.J. Uggowitzer, Selective interfacial bonding in Al(Si)-diamond composites and its effect on thermal conductivity, Compos. Sci. Technol. 66 (2006) 2677–2685. https://doi.org/10.1016/j.compscitech.2006.03.016.

DOI: 10.1016/j.compscitech.2006.03.016

Google Scholar

[46] M. Zain-ul-abdein, K. Raza, F.A. Khalid, T. Mabrouki, Numerical investigation of the effect of interfacial thermal resistance upon the thermal conductivity of copper/diamond composites, Mater. Des. 86 (2015) 248–258. https://doi.org/10.1016/j.matdes.2015.07.059.

DOI: 10.1016/j.matdes.2015.07.059

Google Scholar

[47] J.A. Belk, M.R. Edwards, W.J. Farrell, B.K. Mullah, Deformation behaviour of tungsten-copper composites, Powder Metall. 36 (1993) 293–296. https://doi.org/10.1179/pom.1993.36.4.293.

DOI: 10.1179/pom.1993.36.4.293

Google Scholar

[48] A. Niazi, S.K. Li, Y.C. Wang, Z.Y. Hu, U. Zahid, Thermo physical properties of copper/diamond composites fabricated by Spark Plasma Sintering, Adv. Mater. Res. 712–715 (2013) 208–212. https://doi.org/10.4028/www.scientific.net/AMR.712-715.208.

DOI: 10.4028/www.scientific.net/amr.712-715.208

Google Scholar

[49] Z. Xie, H. Guo, X. Zhang, S. Huang, H. Xie, X. Mi, Tailoring the thermal and mechanical properties of diamond/Cu composites by interface regulation of Cr alloying, Diam. Relat. Mater. 114 (2021) 108309. https://doi.org/10.1016/j.diamond.2021.108309.

DOI: 10.1016/j.diamond.2021.108309

Google Scholar

[50] X. Long, Y. Bai, M. Algarni, Y. Choi, Q. Chen, Study on the strengthening mechanisms of Cu/CNT nano-composites, Mater. Sci. Eng. A. 645 (2015) 347–356. https://doi.org/10.1016/j.msea.2015.08.012.

DOI: 10.1016/j.msea.2015.08.012

Google Scholar

[51] S. Madhusudan, M.M.M. Sarcar, N.R.M.R. Bhargava, Fabrication and characterization of aluminium-copper composites, J. Alloys Compd. 471 (2009) 116–118. https://doi.org/10.1016/j.jallcom.2008.04.025.

DOI: 10.1016/j.jallcom.2008.04.025

Google Scholar

[52] J.W. Tomm, A. Gerhardt, T. Elsaesser, D. Lorenzen, P. Hennig, Simultaneous quantification of strain and defects in high-power diode laser devices, Appl. Phys. Lett. 81 (2002) 3269–3271. https://doi.org/10.1063/1.1514390.

DOI: 10.1063/1.1514390

Google Scholar

[53] L. Sun, X. Zuo, P. Guo, X. Li, P. Ke, A. Wang, Role of deposition temperature on the mechanical and tribological properties of Cu and Cr co-doped diamond-like carbon films, Thin Solid Films. 678 (2019) 16–25. https://doi.org/10.1016/j.tsf.2019.03.034.

DOI: 10.1016/j.tsf.2019.03.034

Google Scholar

[54] S. Singh, S. Gangwar, S. Yadav, A Review on Mechanical and Tribological Properties of Micro/Nano Filled Metal Alloy Composites, Mater. Today Proc. 4 (2017) 5583–5592. https://doi.org/10.1016/j.matpr.2017.06.015.

DOI: 10.1016/j.matpr.2017.06.015

Google Scholar

[55] S.S. Bujari, D.R. V. Kurahatti, a Review on Processing and Tribological Properties of Metal Matrix Composites, Ijaetmas. 3 (2016) 302–310.

Google Scholar

[56] J.P. Annaraj, N. Bose, N. Rajesh Jesudoss Hynes, A review on mechanical and tribological properties of sintered copper matrix composites, AIP Conf. Proc. 2142 (2019). https://doi.org/10.1063/1.5122419.

DOI: 10.1063/1.5122419

Google Scholar

[57] X. Gao, H. Yue, E. Guo, S. Zhang, L. Yao, X. Lin, B. Wang, E. Guan, Tribological properties of copper matrix composites reinforced with homogeneously dispersed graphene nanosheets, J. Mater. Sci. Technol. 34 (2018) 1925–1931. https://doi.org/10.1016/j.jmst.2018.02.010.

DOI: 10.1016/j.jmst.2018.02.010

Google Scholar

[58] H. Zhou, P. Yao, T. Gong, Y. Xiao, Z. Zhang, L. Zhao, K. Fan, M. Deng, Effects of ZrO2 crystal structure on the tribological properties of copper metal matrix composites, Tribol. Int. 138 (2019) 380–391. https://doi.org/10.1016/j.triboint.2019.06.005.

DOI: 10.1016/j.triboint.2019.06.005

Google Scholar

[59] N. Zhao, J. Li, X. Yang, Influence of the P/M process on the microstructure and properties of WC reinforced copper matrix composite, J. Mater. Sci. 39 (2004) 4829–4834. https://doi.org/10.1023/b:jmsc.0000035321.65140.14.

DOI: 10.1023/b:jmsc.0000035321.65140.14

Google Scholar

[60] M.A. El-Hadek, S.H. Kaytbay, Fracture properties of SPS tungsten copper powder composites, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44 (2013) 544–551. https://doi.org/10.1007/s11661-012-1396-x.

DOI: 10.1007/s11661-012-1396-x

Google Scholar

[61] J. Das, A. Chakraborty, T.P. Bagchi, B. Sarma, Improvement of machinability of tungsten by copper infiltration technique, Int. J. Refract. Met. Hard Mater. 26 (2008) 530–539. https://doi.org/10.1016/j.ijrmhm.2007.12.005.

DOI: 10.1016/j.ijrmhm.2007.12.005

Google Scholar

[62] D.H. Buckley, K. Miyoshi, Tribological properties of structural ceramics., 1985. https://doi.org/10.1016/b978-0-12-341829-6.50012-8.

Google Scholar

[63] S. Biswas, P.K. Rohatgi, Tribological properties of cast graphitic-aluminium composites, Tribol. Int. 16 (1983) 89–102. https://doi.org/10.1016/0301-679X(83)90021-X.

DOI: 10.1016/0301-679x(83)90021-x

Google Scholar

[64] and E.W. A.W. Ruff, M.B. Peterson, A. Gangopadhyay, Wear and friction characteristics of self lubricating copper intercalated graphite composites, DTIC. WEAR AND F (1989) 19960911 024.

Google Scholar